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Preface 

 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the framework of the 
Organisation for Economic Co-operation and Development (OECD) to implement an international 
energy programme. A basic aim of the IEA is to foster international co-operation among the 28 IEA 
participating countries and to increase energy security through energy research, development and 
demonstration in the fields of technologies for energy efficiency and renewable energy sources.  

 

The IEA Energy in Buildings and Communities Programme  

The IEA co-ordinates research and development in a number of areas related to energy. The mission 
of the Energy in Buildings and Communities (EBC) Programme is to develop and facilitate the 
integration of technologies and processes for energy efficiency and conservation into healthy, low 
emission, and sustainable buildings and communities, through innovation and research. (Until March 
2013, the IEA-EBC Programme was known as the Energy in Buildings and Community Systems 
Programme, ECBCS.) 

The research and development strategies of the IEA-EBC Programme are derived from research 
drivers, national programmes within IEA countries, and the IEA Future Buildings Forum Think Tank 
Workshops. The research and development  (R&D) strategies of IEA-EBC aim to exploit technological 
opportunities to save energy in the buildings sector, and to remove technical obstacles to market 
penetration of new energy efficient technologies. The R&D strategies apply to residential, commercial, 
office buildings and community systems, and will impact the building industry in five focus areas for 
R&D activities:  

− Integrated planning and building design 
− Building energy systems 
− Building envelope 
− Community scale methods 
− Real building energy use 

 

The Executive Committee 

Overall control of the IEA-EBC Programme is maintained by an Executive Committee, which not only 
monitors existing projects, but also identifies new strategic areas in which collaborative efforts may be 
beneficial. As the Programme is based on a contract with the IEA, the projects are legally established 
as Annexes to the IEA-EBC Implementing Agreement. At the present time, the following projects have 
been initiated by the IEA-EBC Executive Committee, with completed projects identified by (*): 

Annex 1:  Load Energy Determination of Buildings (*) 
Annex 2:  Ekistics and Advanced Community Energy Systems (*) 
Annex 3:  Energy Conservation in Residential Buildings (*) 
Annex 4:  Glasgow Commercial Building Monitoring (*) 
Annex 5:  Air Infiltration and Ventilation Centre  
Annex 6:  Energy Systems and Design of Communities (*) 
Annex 7:  Local Government Energy Planning (*) 
Annex 8:  Inhabitants Behaviour with Regard to Ventilation (*) 
Annex 9:  Minimum Ventilation Rates (*) 
Annex 10:  Building HVAC System Simulation (*) 
Annex 11:  Energy Auditing (*) 
Annex 12:  Windows and Fenestration (*) 
Annex 13:  Energy Management in Hospitals (*) 
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Annex 14:  Condensation and Energy (*) 
Annex 15:  Energy Efficiency in Schools (*) 
Annex 16:  BEMS 1- User Interfaces and System Integration (*) 
Annex 17:  BEMS 2- Evaluation and Emulation Techniques (*) 
Annex 18:  Demand Controlled Ventilation Systems (*) 
Annex 19:  Low Slope Roof Systems (*) 
Annex 20:  Air Flow Patterns within Buildings (*) 
Annex 21:  Thermal Modelling (*) 
Annex 22:  Energy Efficient Communities (*) 
Annex 23:  Multi Zone Air Flow Modelling (COMIS) (*) 
Annex 24:  Heat, Air and Moisture Transfer in Envelopes (*) 
Annex 25:  Real time HVAC Simulation (*) 
Annex 26:  Energy Efficient Ventilation of Large Enclosures (*) 
Annex 27:  Evaluation and Demonstration of Domestic Ventilation Systems (*) 
Annex 28:  Low Energy Cooling Systems (*) 
Annex 29:  Daylight in Buildings (*) 
Annex 30:  Bringing Simulation to Application (*) 
Annex 31:  Energy-Related Environmental Impact of Buildings (*) 
Annex 32:  Integral Building Envelope Performance Assessment (*) 
Annex 33:  Advanced Local Energy Planning (*) 
Annex 34:  Computer-Aided Evaluation of HVAC System Performance (*) 
Annex 35:  Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 
Annex 36:  Retrofitting of Educational Buildings (*) 
Annex 37:  Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 
Annex 38:  Solar Sustainable Housing (*) 
Annex 39:  High Performance Insulation Systems (*) 
Annex 40:  Building Commissioning to Improve Energy Performance (*) 
Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 
Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems  

(FC+COGEN-SIM) (*) 
Annex 43: Testing and Validation of Building Energy Simulation Tools (*) 
Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 
Annex 45: Energy Efficient Electric Lighting for Buildings (*) 
Annex 46: Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government 

Buildings (EnERGo) (*) 
Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 
Annex 48: Heat Pumping and Reversible Air Conditioning (*) 
Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 
Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 
Annex 51: Energy Efficient Communities (*) 
Annex 52: Towards Net Zero Energy Solar Buildings (*) 
Annex 53: Total Energy Use in Buildings: Analysis & Evaluation Methods (*) 
Annex 54: Integration of Micro-Generation & Related Energy Technologies in Buildings 
Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of 
  Performance & Cost (RAP-RETRO) 
Annex 56: Cost Effective Energy & CO2 Emissions Optimization in Building Renovation 
Annex 57: Evaluation of Embodied Energy & Greenhouse Gas Emissions for  
  Building Construction 
Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale 
   Dynamic Measurements  
Annex 59: High Temperature Cooling & Low Temperature Heating in Buildings 
Annex 60: New Generation Computational Tools for Building & Community Energy Systems 
Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings 
Annex 62:  Ventilative Cooling 
Annex 63:  Implementation of Energy Strategies in Communities 
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Annex 64:  LowEx Communities - Optimised Performance of Energy Supply Systems with 
  Exergy Principles 
Annex 65:  Long-Term Performance of Super-Insulating Materials in Building Components  
  and Systems 
Annex 66:  Definition and Simulation of Occupant Behavior in Buildings 
Annex 67:  Energy Flexible Buildings 
Working Group - Energy Efficiency in Educational Buildings (*) 
Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 
Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 
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Abbreviations and Acronyms 

BC  Housing British Columbia Housing Corporation 

BCIT  British Columbia Institute of Technology 

BSCE  Building Science Centre of Excellence 

CDF  Cumulative distribution function 

CISBO  Centre for Indoor Environment and Health in Homes 

DHW  Domestic hot water 

EBC  Energy in Buildings and Communities 

ECBCS  Energy in Buildings and Community Systems Programme 

ECDF Empirical cumulative distribution function 

E-level Energy performance indicator (E-level corresponding regional EPBD-regulation) 

EPV  Energy performance value 

GLM  Generalised Linear Models 

HLC  Heat loss coefficient 

HVAC Heating, ventilation, and air conditioning 

IEA  International Energy Agency 

IECH Indoor Environment and Children's Health 

IWT  Flemish government agency for Innovation by Science and Technology 

KNMI  Royal Dutch Meteorological Institute 

K-S test  Kolmogorov-Smirnov test 

LCC  Life Cycle Cost 

LR  Living room 

MFH  Multi-family house 

MSE  Mean squared error 

MSI  Mould Severity Index 

Net  Energy reduction for heating and cooling 

NOW  Total number of hours that windows are open divided by the number of days 

OECD  Organisation for Economic Co-operation and Development 

PDF  Probability density functions 

R&D  The research and development 
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RH  Row house 

SDH  Semi-detached house 

SFH  Single family house 

SH  Space heating 

SHGC  Solar Heat Gain Coefficient 

SMHI  Rossby Centre 

S-W test Shapiro-Wilk test 

TD  Time of the day 

TUD  Experimental assessment of material properties 

UHASSELT  PHL University College 

UHI  Urban heat island 

UHII  Urban heat island intensity at a specific time 

WFS  Warm Front Study 

 

Nomenclature 

Latin characters 

A  Cross-sectional area of the specimen  [m2] 

ACH Air change rate [h-1] 

Aw  Water absortion coefficient  [kg/m2s0.5]  

Afacade  Facade area  [m2] 

��  Ground floor area  [m2] 

C  Indoor CO2 concentration after measurements  [g/m3] 

c  Specific heat capacity  [J/kgK] 

C0  Indoor CO2 concentration before measurements  [g/m3] 

Cv  CO2 concentration of outdoor air  [g/m3] 

d  Thickness of the specimen  [m] 

��  Heating degree days calculated over the monitoring period   

E-value Normalized space heating fuel consumption  [W/K/m2] 

g  Gravity acceleration  [m/s2] 

Keff  Saturated liquid conductivity  [s] 

Kl  Unsaturated liquid conductivity  [s] 
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Kl(θ)  Liquid water conductivity  [s] 

Kv(θ)  Water vapour permeability  [s] 

m  CO2 production  [g/h] 

N  Normal distribution  

n50, ACH50 Air change rate at 50 Pa [h-1] 

��,��	  Saturated vapour pressure  [Pa] 

q50  Air permeability  [m3/ (hm2)] 

 

Greek characters 

α Predefined significance level  

Δp  Pressure difference between two sides of the specimen [Pa] 

∆ν  Moisture excess [g/m3] 

ΔV  Volume of liquid water flowing through the material [m3] 

θ(pC)  Moisture retention function  [m3/m3] 

θcap  Capillary saturation  [m3/ m3] 


�  Outdoor air temperature  [°C] 


�  Indoor air temperature  [°C] 

θpor  Open Porosity  [m3/ m3] 

λ(θ)  Thermal conductivity [W/ (mK)] 

λdry  Thermal conductivity [W/ (mK)] 

λ  Thermal conductivity coefficient [W/ (mK)] 

µ  Opening probability   

µΔν  Average value of indoor moisture excess  [kg/m3]  

µµ  Average value of averages   

µσ  Average of standard deviation values  

µdry  Dry cup value   

ρ  Bulk density  [kg/m3] 

σΔν  Standard deviation of indoor moisture excess  [kg/m3] 

σµ  Standard deviation of averages  

σσ  Standard deviation of standard deviation values  

τ  Time [h] 
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Φ-1  Inverse normal cumulative distribution function  [kg/m3] 

 k Phase change for a specific harmonic  

ω0  Angular velocity  [rad/s] 
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1 INTRODUCTION 
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1.1 Motivation and Objectives 

The probability assessment of performance and cost intended in Annex 55 is only possible if 

stochastic data are available. Subtask 1 was therefore designed to gather data that could be 

used in the intended assessment. That data should define a set of parameters with attached 

statistical distributions. Although apparently simple to implement, the definition of the best 

strategy was quite complex as a match between the available raw data from different sources 

and the desired input data for different stochastic analysis procedures had to be found. 

Taking Life Cycle Cost (LCC) variability evaluation as a sound objective for this project, the 

desired input data can be identified in the relevant available analysis tools. Assuming that 

hygrothermal analysis is decisive for the success in that objective, still a wide list of parameters 

could be found, as available codes use different simulation strategies. 

Current hygrothermal tools execute mainly deterministic simulations due to the fact that each 

parameter uses a desired value. The corresponding outputs will be a predictably determined 

value/ values. However, the simulation inputs, e.g., user behaviour, material properties, and 

weather condition, in the real world will not always follow the way defined in the simulation. 

For instance, material properties obtained from reference laboratory condition may differ from 

those at environmental conditions when the material was incorporated in the building envelope 

due to the change of the surrounding environment or ageing. Weather condition used in the 

simulation either is the measured data of past years or the synthetic data, e.g., test reference 

year. The stochastic nature of the inputs leads to the variations in the simulation outputs. 

The objective of Subtask 1 was to make available stochastic data for application in hygrothermal 

analysis. Given the current state of the art, it was decides that the following goals should be 

achieved: 

• Define a structure for the data so that they can be useful for researchers and 

practitioners; 

• Identify source projects that could supply stochastic data; 

• Synthetize the methodologies that allowed for the data collection and analysis; 

• Assemble the data. 
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1.2 Structure 

The structure of this document was determined by the need to clearly state the context of the 

presented data to allow for their correct application. 

The second chapter presents the source projects where the information was gathered, 

identifying specific features of the sample that define the resulting data. 

The third chapter presents the Input Data arranged in the following group of parameters: 

stochastic material data base, ventilation and airtightness, indoor loads and weather. Each 

subchapter is arranged so that each set of collected raw data is introduced, the analysis to derive 

statistical distributions that was performed on the raw data is explained and the final stochastic 

data sets are presented. The focus was put on ensuring that the connection to measured data 

wouldn’t be lost. 

The fourth chapter presents work on synthetic data, demonstrating how additional sets of 

valuable information can be prepared with more advanced analysis. Completing material data 

sets, window opening and heat island are hence presented as examples. 

The fifth chapter addresses energy use data, presenting examples that can be used for validation 

of stochastic methodologies, using the input data presented in chapter three. 

This document includes sets of electronic data resulting from the work presented in chapters 

three to five. 
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2 SOURCE	

PROJECTS	
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2.1 Introduction 

This report was built on data previously collected in different projects. In this chapter, a synthesis 

of the projects carried out by each institution are presented. Details from the developed 

experimental campaigns, including specific features, sample sizes, methodologies and analysed 

parameters are described. 
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2.2 Belgium [KUL] – IWT TETRA 

BEP2020 (2011-2013) 

IWT TETRA BEP2020 is a two-year research project which investigated reliable solutions for 

energy efficiency of new dwellings. The main research question was how to realise robust low 

energy dwellings. To answer this question it was investigated which design decisions and energy 

measures have the largest impact on the actual performance of the dwelling and are the least 

influenced by user behaviour.  The project was performed by Department of Arts & Architecture 

at PHL University College (UHasselt) and Building Physics Section at KU Leuven, Belgium. Several 

Flemish enterprises and institutions were involved in the project and it was partly subsidised by 

these partners and partly by the Flemish government agency for Innovation by Science and 

Technology (IWT).  

One major part of the research project is a measurement campaign of 70 new dwellings in 

Flanders. In this campaign, the energy use, indoor climate and air tightness have been measured. 

In the second major part, representative dwelling simulations determine the feasibility of (net) 

energy reduction for heating and cooling.  

In this report, the air tightness measurements are collected as they are most valuable for 

renovation development.  
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2.3 Canada [BCIT] – Indoor 

Temperature and Humidity in a 

Multi-Unit Residential Building 

To assess the indoor temperature and humidity distributions in a multi-unit residential building 

in Vancouver, the Building Science Centre of Excellence (BSCE) at the British Columbia Institute 

of Technology (BCIT) monitored the temperature and humidity of twenty-two rooms in four 

Suites for about seventeen months. The collected data is also used to obtain statistical 

information on the seasonal variations and ranges of indoor temperature and relative humidity 

conditions of Suites in the same building. The residential building is six-storey and has a total of 

60 units. It is surrounded by low to mid-rise buildings and two major streets in the east and north 

orientations, 

Figure 2.1.  

  Court N 

A Lounge   
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Figure 2.1 Monitored Suite locations on the fifth floor in Princess Place. 

The four Suites that are considered in the study are all on the fifth floor, and they represent 

different occupant density, floor area and physical orientations. They are chosen to be on the 

same height level to allow similar outdoor and corridor environmental exposures including stack 

and mechanical corridor pressures. Suite ‘A’ and Suite ‘D’ are end units and Suite ‘B’ is adjacent 

to a Lounge room in the east and a neighbour Suite in the west. The corridors of the Suites, 

except that of Suite ‘B’, are pressurized and conditioned. Two of the Suites (Suite ‘B’ and ‘D’) 

have two bedrooms and the other two (Suite ‘A’ and ‘C’) have three bedrooms. Each Suite has 

also an open style Kitchen (facing to a foyer and a living room), a Bathroom and a Living room 

with a balcony. The two bedroom suites have a floor area of 643 and 654 sq. ft., whereas the 

three bedrooms have a floor area of 892 sq. ft each. The number of occupants in the suites varies 

from two to six. Table 2.1 shows occupant density, type and bedrooms use in the respective 

Suites.  

Table 2.1 Tested Suites’ occupant density, type and bedroom use. 

Suites Floor Area 

(square feet) 

Number of Occupants Number of Bedrooms 

(Number of Occupants) 

 

A 

 

892 

3  

(1 adult, 2 children) 

Master bedroom  

(1 or 2) 

Bedroom #2 

(1 or 2) 

Bedroom 

#3 

(Storage) 

 

B 

 

643 

4  

(2 adults and 2 

children) 

Master bedroom 

(3) 

Bedroom #2 

(1) 

 

 

C 

 

892 

6 Master BR  

(2) 

Bedroom #2 

(2) 

Bedroom 

#3 

  Court N 

A Lounge   

 

 

B 

C 

D
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(2 adults and 4 

children) 

(2) 

 

D 

 

654 

2 

(1 adults and 1 child) 

Master BR 

(1) 

Bedroom #2 

(1) 

 

 

Mechanical ventilation is provided using the Bathroom exhaust fans (Panasonic FV-1VQ3), which 

have manufacturer rating of 110 CFM and actual measured ventilation rate capacity of 50 to 70 

CFM and sonic level of 0.8 Sone. The operations of the fans are automatically controlled with 

pre-set ventilation time schedule: eight hours a day, 4 hours in the morning (7 to 11 am) and 

another 4 hours in the evening (6 to 10 pm). The same time-controlled ventilation strategy is 

implemented in all Suites to synchronize the fans operations and avoid intra Suite airflow. Suites 

are heated by electric baseboard heater while the corridors are heated by forced air heating 

system. 

The project was financially supported by the British Columbia Housing Corporation (BC Housing), 

Affordable Housing Societies and the School of Construction and the Environment of the 

British Columbia Institute of Technology.  
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2.4 Denmark [DTU] – Indoor 

Environment and Children's Health 

(IECH) 

During the late winter and spring of 2008 an investigation (Indoor Environment and Children's 

Health (IECH)) of the indoor environments in 500 family homes was undertaken on the island of 

Funen in Denmark. The primary focus of the investigation was to supply data to help test the 

hypothesis that there is a relation between the indoor environment in which young children 

grow up and the diseases they experience; the main focus was on allergies and asthma. The data 

was collected from children’s bedrooms over the course of 2-4 days (with an average of 2.5 

days). 

The form of the collected data allows for uses other than epidemiological. From the data it has 

been possible to obtain information on means, standard deviations and confidence intervals for 

temperatures, relative humidities, moisture productions and air change rates in family homes, 

using children’s bedrooms as proxies for family homes. For the Annex, the data is divided in two 

groups: Single and multi-family homes. Of the 500 family homes 440 are single and 60 are multi-

family homes. 
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2.5 Estonia [TTU] – Technical condition 

and indoor climate of Estonian 

apartment buildings 

The research has been conducted as a result of the project “Reducing the environmental impact 

of buildings through improvements of energy performance, 3.2.0801.11-0035” (financed by 

European Union through the EuropeanRegional Development Fund and SA Archimedes) and 

project “Nearly-zero energy solutions and their implementation on deep renovation of 

buildings, IUT1−15” (financed by Estonian Ministry of Education and Research). The study utilizes 

the measuring data of the following national research projects financed by KredEx, by the 

Ministry of Economic Affairs and Communications, and Tallinn University of Technology: 

• On brick apartment buildings built between 1955 and 1990: “Technical condition and 

service life of Estonian brick apartment buildings” (2008-2010); 

• On wooden apartment buildings built between 1880-1940: “Technical condition and 

service life of Estonian wooden apartment buildings” (2009-2011). 

The purposes of the study were: 

• Indoor climate and technical survey of apartment buildings with different ages; 

• To analyse the collected data and to assess the current condition, need for improvement 

and future perspectives; 

• To systematize collected data for future analysis and for working out solutions for 

determined problems. 

The study consisted following parts: 

• Determination of studied apartment buildings based on building typology and age 

distribution of buildings; 

• Investigation of building structures (durability, service life); 

• Building physical studies (hygrothermal performance of structures, hygrothermal loads, 

thermal bridges, thermal transmittance, airtightness of building envelope); 

• Indoor climate studies (thermal comfort, indoor air quality); 

• Survey of building service systems (ventilation, heating, water supply, sewerage, 

electricity); 

• Questioning of inhabitants of studied buildings. 
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2.5.1.1 Measurement methods 

Technical survey was done for whole building. Building physical and indoor climate studies were 

done in 1 to 3 apartments in each building. 

All together 48 apartments in 30 brick apartment buildings and in 41 apartments in 29 wooden 

apartment buildings were investigated. 

The values of temperature (t) and relative humidity (RH) were measured with data loggers at 

one–hour intervals, mainly from master bedrooms. The information about air change in 

bedrooms was determined based on measurement of the dynamics and level of CO2 produces 

from occupants.  

For estimation of air change rate in bedrooms was determined based on measurement of the 

dynamics and level of CO2 produces from occupants at 10 min. intervals during 2-3 week period 

during winter and summer period. 

The air tightness of building fabric was measured with the standardized   
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[1] fan pressurization method, using “Minneapolis Blower Door Model 4” equipment with an 

automated performance testing system (flow range at 50 Pa 25 m3/h – 7.800 m3/h, accuracy 

±3 %). To determine the air tightness of the building envelope, depressurizing and pressurizing 

tests were conducted. All the exterior openings: windows and doors were closed; ventilation 

ducts and chimneys were sealed. To compare different buildings, the air flow rate at the 

pressure difference 50 Pa was divided by the external envelope area (resulting air leakage rate 

at 50 Pa) or by the internal volume of the building (result air change rate at 50 Pa, n50 value). 

To determine typical air leakage places and their distribution, an infrared image camera FLIR 

Systems E320 (accuracy ±2 % or ±2 °C , measurement range; -20 to 500 °C ) and a smoke detector 

were used. All the thermography tests were made later during the winter period. The difference 

between the indoor and the outdoor air temperature was at least 20 °C . Thermography 

investigations were done twice. First, to determine the normal situation, the surface 

temperature measurements were performed without any additional pressure difference. Next, 

to determine the main air leakage places, the 50 Pa negative pressure under the envelope was 

set with fan pressurization equipment. After the infiltration airflow had cooled the inner surface 

(~30 to 45 min) of the envelope, the surface temperatures were measured with the infrared 

image camera from the inside of the building. 

Based on measurements of indoor CO2 levels in bedrooms and estimated CO2 (as tracer gas) 

emissions from residences during the night (≈20:00h to 8:00h), the air change in bedrooms was 

estimated: 
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Where: m is CO2 production, g/h; 
•

V  is air flow rate, l/h; Cv is CO2 of outdoor air, g/m3; C is CO2 

concentration indoors after measurements, g/m3; C0 is CO2 concentration indoors before 

measurements, g/m3; τ is time, h. 

The actual use of energy was determined for the building as a whole and differences between 

apartments were not determined. Analysis includes measurements of electricity, gas, water, hot 

water, and heating (space heating and heating of ventilation air) over a 3-year period: 2006–

2009 in brick apartment buildings and 2007–2010 in wooden apartment buildings. As wooden 

apartment buildings were primarily heated by stoves, it was difficult to determine energy for 

space heating. For buildings, where all energy using components were available, the primary 

energy use in the building is calculated. 

2.5.1.2 Studied buildings 

Old wooden apartment buildings were built between 1880-1940. Apartments consisted of one, 

two or three rooms, with a separate kitchen, entry, and sanitary rooms. Apartments were 

heated with wooden stove (65 %; original heating system) or with radiators (23 %: water or 8 %: 

electricity) where the heat source was a gas boiler or district heating. Average living density was 

26 m2/person.  
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Old brick apartment buildings (Figure 2.2) were built between 1955 and 1990. Apartments 

consisted of one, two or three rooms, with a separate kitchen, entry, and sanitary rooms. 

Buildings were heated with district heating and one-pipe radiator heating systems. Typically, 

radiators were not equipped with special thermostats, therefore individual control of the room 

temperature was impossible. Room temperature for the whole building was controlled in heat 

substations depending on outdoor temperature. 

Typically, the studied dwellings had natural passive stack ventilation. In some apartments 

kitchens were supplied with a hood. In all of the dwellings studied, windows could be opened 

for airing purposes. Most of the apartments studied were in private ownership. 

  

  

Figure 2.2 Example of measured brick apartment buildings (left) and wooden apartment 

buildings (right). 

In many cases buildings were insufficiently heated and ventilated. This resulted in bad indoor 

climate and high indoor humidity loads, but also provided low energy bills for inhabitants. 

Unfortunately many inhabitants are more concerned with low energy bills rather than high 

quality of indoor air. 

Old brick apartment buildings were typically five to nine storey with cellar. The thickness of 

external walls was typically 42 to 51 cm, including ~5 to 6 cm thermal insulation (mineral 

wool λ≈0.05 W/(m⋅K). The thickness of the wall behind the batteries is thinner, see 

Figure 2.3. Internal surface of the wall is plastered as a rule. External surface can be 

plastered or not (brick surface). Window is tightened into wall with tow (not really 

airtight connection) and windows were designed to be leaky to guarantee the natural 

ventilation (Figure 2.4 and Figure 2.5). 
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Figure 2.3 Sections of typical external walls of studied brick apartment buildings. 

  

Figure 2.4 Connection of the external wall and window of studied brick apartment buildings. 

Figure 2.5 Connection of the external wall and roof of studied brick apartment buildings. 
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Old wooden apartment buildings were typically two and three storey buildings with cellar. 

External walls were built with log or as timber-frame structure, see. Internal surface of wall was 

plastered or covered with cardboard. External finishing of walls was wooden panelling or plaster 

(Figure 2.7). 

 

Figure 2.6 Sections of typical external walls of studied wooden apartment buildings. 

Figure 2.7 Connection of the external wall, foundation and base floor of studied wooden 

apartment buildings. 
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2.6 Finland [TUT] 

2.6.1 Timber-framed detached houses 

Tampere University of Technology (Laboratory of Structural Engineering) and Helsinki University 

of Technology (Laboratory of Heating Ventilating and Air-Conditioning) studied with field 

surveys the indoor climate, ventilation and air tightness of Finnish timber-framed single family 

houses [4]. The research included 100 timber-framed houses that were moderately new. The 

houses differed from each other by structure, ventilation type, age and construction method. 

The measurements were done during 2002-2004. 

The 100 timber-framed houses under investigation represent the typical Finnish construction 

practice. Figure 2.8 gives an example of a typical measured house. The average volume of the 

houses is 405 m3, floor area 160 m2 and façade area 405 m2. It should be noted that the whole 

group of timber-framed houses is not a random sample because the purpose was to gather 

proper subgroups of different types of houses. 

   

Figure 2.8 Typical timber-framed house and an example of the outer wall structure. 

2.6.2 Heavyweight detached houses 

Tampere University of Technology (Department of Civil Engineering/Structural Engineering) and 

Helsinki University of Technology (Department of Heating Ventilating and Air-Conditioning) 

studied with field surveys the indoor climate, ventilation and air tightness of Finnish 

heavyweight detached houses [5]. The research included 50 detached heavyweight concrete 

and masonry houses (10 autoclaved aerated concrete, 10 lightweight aggregate concrete, 10 

brick, (5 calcium silicate brick and 5 burnt clay brick), 10 shuttering concrete block and 10 

concrete element houses) and 20 log houses. The measurements were done during 2005-2008. 

The 70 concrete, masonry and log houses represent the typical Finnish one-family houses built 

with heavyweight structures. The average volume of this set of houses is 534 m3, floor area 195 

m2 and façade area 472 m2. Figure 2.9 gives an example of a heavyweight building and a brick 

wall. The purpose of the selection of houses was that the subgroups would represent different 

heavyweight structure types (AAC, LWAC, brick, concrete block and concrete element). 
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Figure 2.9 Typical heavyweight detached house and an example of the outer wall structure. 

2.6.3 Individual air tightness measurements in apartment buildings 

During the years 2009-2012 the air tightness of 25 apartment buildings was measured. The 

measurements were done for the whole building or at least for one whole stair case. All of the 

buildings have similar concrete element structures. The average volume of the measured 

buildings was 6560 m3, floor area 2440 m2 and façade area 2370 m2. Examples of the apartment 

building and the outer wall structure are shown in Figure 2.10. 

   

Figure 2.10 Typical apartment building and the outer wall structure. 

 



Annex 55 RAP-Retro  20 Subtask 1: Stochastic data 

2.7 Germany 

2.7.1 Introduction measured Houses (IBP) 

Within the framework of several research projects in order to analyse energy consumption of 

German residential buildings, the Fraunhofer-Institute for Building Physics has carried out many 

measurements on different locations including manual window opening. In total 114 units have 

been investigated in different measuring timespans lasting from one to four years. 

In order to create energy balances for each hour, measurements of energy consumption for 

space heating, DHW and power consumption of home devices, HVAC system and photovoltaic 

have been taken. Together with characteristic values of the building like U-value of the envelope 

or air tightness (n50) and the outdoor climate conditions, the heat flow was determined. 

Most of the research projects have been carried out in Germany (see Figure 2.11) hence the 

presented data is only representative for Middle European climates. Nevertheless, some general 

statements can be deduced such as dependencies of window openings and outdoor 

temperature. 

) 

Figure 2.11 Location of the Projects- Google Earth®. 

The majority of the buildings do have relatively well constructed and isolated envelopes and 

proper HVAC systems which comes close to the passive house standard (some are passive 
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houses). This has to be considered, as it is not representative of the current building stock in 

Germany. The year of construction for the buildings is between 1970 and 2000. Some building 

examples are shown in  

Figure 2.12, Figure 2.13, Figure 2.14 and Figure 2.15. 

 

Figure 2.12 Celle - 3-LitreBuilding. Figure 2.13 Durbach - Project Weber 2001. 

 

Figure 2.14 Stuttgart Feuerbach - Passive 

House Estate. 

 

Figure 2.15 Fulda - Hybrid HVAC Building. 

2.7.1.1 Description of the data 

Two types of data are collected: data collected before the actual continuous data recording and 

the measured data in hourly values over a certain timespan.  

Data recorded before the continuous measuring are considered to be constant during the 

measurement. Those values include an air tightness test at 50 Pa (blower door test), localization 

of thermal bridges via thermographic inspection and additional parameters regarding the 

building, HVAC system and boundary conditions. 

The following list provides an overview of the constant measurements: 

• Building: type, treated floor area, HVAC system, site situation, location; 

• Apartment: number of occupants, room types, volume; 

• Envelope: air tightness, U-values, SHGC; 

• Weather station: site situation, location. 
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The continuous data is measured by sensors in different time intervals (60min, 10min, 1min). 

However, if the data is not hourly measured it is converted to hourly values by their mean. 

Thereby, each monitoring point (e.g. between 18:01h and 19:00h) gets aggregated to one value 

for each hour of the day (e.g. 19:00h). It consequently reduces the amount of data in the 

database, but also implicates certain loss of measured information. 

The following data is measured during the monitored period, however not every parameter is 

available and analysed for each building: 

• Temperature: indoor air, surface, DHW, exhaust air; 

• Humidity: rel. humidity indoor, surface, exhaust air; 

• Energy / Electricity: home devices, HVAC, photovoltaic, total; 

• Window opening in seconds per hour (max. 3600 sec/hr); 

• Outdoor climate: solar, temperature, rel. humidity. The outdoor climate is measured 

one meter above the highest point of the building for each location. 

For the window openings it should be pointed out that the sensor only measured the status of 

the window, which could be open or closed. So it doesn’t distinguish between tilting or complete 

opening and it does not monitor the opening angle. 

Unfortunately, the recording of the occupancy has not been realised, which would have been of 

much interest. 

2.7.1.2 Database, Data Format 

Initially, the whole data has been recorded and saved in Excel format for each project, while one 

sheet lists the hourly values of the measured data and the other ones contain the static data. 

Compiling all projects would result in an enormous amount of data which is not suitable for 

Excel. Therefore a central MS SQL Server database has been set up, which stores all information 

given in the Excel files. 

This opens more possibilities for analysing the data, as several projects can be cross-linked and 

compiled by external tools via SQL queries. The database is structured in tables which contain 

the static data of the projects and tables which list the monitored data. Basically each sensor 

has its own table in the database. The static tables are linked via Primary Key and Foreign Key, 

however, this is not the case for the sensor data tables. 

The advantage is a significant faster SQL query and much less redundant data, but makes the 

query much more difficult to construct. The database structure is shown in Figure 2.16. 
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Figure 2.16 Database Layout. 

The sensor tables consist of columns for the ID, measured data and a time stamp in hourly 

values. There has been no plausibility check when entering the data in the database (eg. Relative 

humidity > 100 %), hence the raw data does contain errors caused by failures of the sensors or 

other circumstances. 

Those incorrect values are filtered during the SQL query before further analysis: 

• Temperature:  -30 °C to 50 °C; 

• Relative Humidty: 0 % to 100 %; 

• Electricity:  0 kWh to 10 kWh; 

• Window opening: 0 sec/hr to 3600 sec/hr. 

The analysis itself has been accomplished with R, a free software environment for statistical 

computing and graphics. R can be enhanced by packages, which enable SQL queries. As R being 

designed to handle large amount of data, it makes it the ideal tool for the analysis. 
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2.7.2 Experimental assessment of material properties [TUD] 

The TUD dedicates to make a wide material data collection that resulted from more than 15 

year's laboratory assessment of material properties. The evaluated materials have a broad 

variability, covering both historical and new-developed building materials on market. Standard 

measurement procedures include: 

Table 2.2 Experimental measurements and corresponding standards. 

Measurement Standard 

Bulk density, matrix density 

and porosity 
DIN ISO 11272 (2001) [6] 

Thermal conductivity 
ASTM C177 (2010) [7], ASTM C518 (2010) [8] 

and DIN EN 12664 (2001) [9] 

Specific heat capacity ASTM E1269 (2011) [10] 

Hygric sorption isotherm ASTM C1498 (2004) [11] and DIN EN ISO 12571 (2000) [12] 

Water retention ASTM C1699 (2009) [13] 

Water vapor transmission ASTM E96 /E96M (2010) [14] and DIN EN ISO 12572 (2001) [15] 

Water absorption coefficient DIN EN ISO 15148 (2003) [16] 

Moreover, a set of experiments to access the moisture transport knowledge in the porous 

material are executed, e.g., drying test, head permeameter and tension infliltrometer [17]; [18]. 

Those measurements together with the standard procedures deliver enough information for 

material characterization. So far, more than 200 high-quality material data from different 

material categories are ready for hygrothermal simulation. 

2.7.2.1 Drying test 

Drying process of a porous material gives insight into the moisture transport characteristics in 

the low moisture content range. A drying apparatus is presented inFigure 2.17. Prior to the test, 

the effectively saturated specimen is sealed on the lateral and bottom sides, allowing only the 

top side exposing to the specific environment. During the test, the specimen is periodically 

weighed to get the information of water mass loss and the corresponding time. The drying 

process is strongly influenced by the climatic conditions and boundary conditions, as well as the 

material properties of specimen itself. Therefore, the detailed information regarding to those 

conditions should be recorded. 
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Figure 2.17 Automated drying apparatus (A); Temperature and relative humidity sensors (B); 

Specimen holder (C). 

 

Figure 2.18 Schematic drawing of the drying process. 

Drying process is comprised of two stages, as shown in Figure 2.18. The first stage, beginning at 

high moisture content, is characterized by a linear water mass loss over time and mainly 

impacted by the boundary conditions, i.e., air flow rate above the evaporation surface. In this 

stage, the specimen is able to deliver stored liquid water to the evaporation surface. The surface 

temperature will decrease due to the water evaporation. In the second stage, the drying rate 

becomes slow and moisture transport is dominated by the water vapor flow within the material. 

This process is mainly governed by material properties of the specimen itself. Therefore, the dry 

process presents a transition of moisture transport from liquid water to water vapor transport. 

This transition can be detected when surface temperature of the specimen increases or linear 

mass decrease over time is no longer maintained. 

The measured drying curves of various building materials are shown in Figure 2.19 [18]. The 

values are normalized to remove the difference in the initial moisture content and the geometry 

of the specimen for easy comparison. The environmental conditions and boundary conditions 

mainly determine the length of the first drying stage, whereas the liquid water conductivity in 

the low moisture content range primarily affects the second drying stage. The plaster has a low 

liquid conductivity in this range, so it owns a longer second drying stage. Calcium silicate has a 
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relatively higher liquid conductivity, so it undergoes a fast second drying stage. For spruce, the 

liquid water transport in longitudinal direction is much faster than that in radial direction. 

 

Figure 2.19 Drying behaviours of various building materials. 

2.7.2.2 Unsaturated liquid conductivity, Kl 

The unsaturated liquid conductivity measures the ability of liquid water transport through a 

porous material near the saturation moisture content region. The unsaturated liquid 

conductivity can be obtained by using a tension infiltrometer, which is composed of a water-

filled tube and a porous ceramic plate connected by a vacuum pump as shown in Figure 2.20.  

 

Figure 2.20 Tension infiltrometer apparatus (A); water filled tube and ceramic plate (B); Capillary 

hole on the lateral –bottom side of the tube (C). 

The water-filled tube with a small-diameter capillary at the lateral-bottom side provides a 

threshold pressure on the top of the specimen. The constant suction pressure is kept up by 

inducing the air bubble through the capillary into the water-filled tube if the pressure falls below 

the desired threshold pressure. Before measurement, the moistened specimen is attached on 

the ceramic plate by the kaolin paste to enhance their contact. The heavy metal ring is used to 
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tighten the contact between the specimen and water-fill tube by its gravity. If the applied suction 

pressure on the bottom side of the ceramic plate exceeds the threshold pressure, then the 

pressure gradient will force the liquid water flowing through the specimen to form a steady state 

flux rate. The different degrees of moisture saturation are achieved by adjusting the suction 

pressures.  

The liquid water conductivity at certain degree of moisture saturation is calculated by: 

l

V d
K

t A p g

∆= ⋅
⋅ ∆ ⋅

,                                                               (2.2) 

where ΔV is the volume of liquid water flowing through the material (m3), t is the time during 

the measurement (s), d is the thickness of the specimen (m), A is the cross-sectional area of the 

specimen (m2), Δp is the pressure difference between two sides of the specimen (pa), and g is 

the gravity acceleration (m/s2). 

The unsaturated liquid water conductivities of various building materials at certain degree of 

saturation are listed in Table 2.3 [18]. 

Table 2.3 Unsaturated liquid water conductivities of various building materials at certain degree 

of saturation. 

Material 
Moisture content 

[m3/m3] 

Mean suction pressure 

[Pa] 

Liquid conductivity  

[s] 

Brick Wienerberger 0.304 8650 2.0e-09 

Sandstone Hildesheim 0.21 395 1.8e-07 

Calcium silicate 0.87 1441 8.5e-09 

Lime plaster 0.22 710 6.8 e-09 

Mortar 0.39 4466 1.1 e-09 

Aerated concrete 0.18 2205 9.3 e-12 

Spruce longitudinal 0.69 1473 2.7e-09 

Spruce radial 0.32 1453 2.7 e-09 

Gypsum board 0.42 870 2.7e-10 

2.7.2.3 Saturated liquid conductivity, Keff 

The saturated liquid conductivity can be measured by a head permeameter apparatus as shown 

in Figure 2.21.  
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Figure 2.21 Head permeameter apparatus (A); laterally sealed specimens (B): head permeameter 

with specimen (C); water container (D). 

It is composed of a head permeameter connected to a vacuum pump and a water container. The 

lateral sealed specimen is initially saturated and installed in the head permeameter, allowing 

one dimensional liquid water flow. The head permeameter with the specimen is then put into 

the water container with controlled temperature. With the application of suction pressure via 

the vacuum pump from one side of specimen, the liquid water will flush the specimen and flow 

into a glass flask through a capillary tube. The steady liquid flow rate can be calculated by 

measuring the increasing weight in the glass flask in the defined time intervals. By converting 

mass flow rate to volumetric flow rate, the saturated liquid conductivity can be determined by 

the equation 2.2. 
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2.8 The Netherlands [TUE] – 

Uncertainties in weather data 

caused by the urban heat island 

Howard reported in 1818 that the temperature of the city of London was not to be considered 

as that of the rural climate [19], [20]. The causes of this phenomenon, later called the urban 

heat island (UHI), were reported by e.g. [21], [22], [23], [24] who indicated that the UHI is a 

result of: low-albedo, air pollution, reduction of the sky view factor, anthropogenic heat, heat 

storage, decrease in evaporation and a reduction of wind speed.  Nowadays the existence urban 

heat island is a well-established and well documented phenomenon e.g. [25], [26], [27], [28], 

[29]. Studies on the impact of elevated temperatures reveal that increased temperatures result 

in increased human mortality [30], the latter being apparent in heat wave events [31], [32], [33]. 

Many of the additional deaths during a heat wave are likely to be caused by an enhanced UHI 

during the heat wave [34]. The effect of the UHI on building energy consumption has been 

described in several studies. Based on [35] and [36] it can be concluded that the UHI influences 

the energy demand significantly. [24] concluded that cooling loads could almost double, which 

was supported by [37] who stated that the cooling energy loads could increase by as much as 

100 %. IPCC assessment report 4 reports that the UHI can affect comfort, health, labour 

productivity, leisure activities and climate control within buildings [38]. Recent studies have 

demonstrated several methods to account for the UHI in the weather data. These methods were 

divided in four categories by [39] and [40]. They consist of (1) Climatology models (e.g. [41], [29]) 

(2) Empirical models which use heat balance equations and empirically derived coefficients (e.g. 

[42], [43], [44], [45]) (3) Computational Fluid Dynamics models (e.g. [46]) and (4) Statistical 

regression methods (e.g. [47], [48], [49]), probability methods and artificial neural networks (e.g. 

[50], [39], [51], [52], [35]). 

 The latter predict the UHI intensity as a function of the main climatic parameters [25]. These 

models can potentially be used to account for the uncertainty in weather data caused by the 

UHI. Weather data might be generated by these UHI models and subsequently be used in 

Building Energy simulations. Section 3.5.1of this report provides an overview of the measured 

UHI intensity in the city of Rotterdam. In section 4.4 the measurements of Rotterdam are used 

to show the predictive capability of statistical methods for UHI intensity prediction. 
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2.9 Portugal [UP] – Social housing 

refurbishment in Porto 

A large social housing retrofitting program was implemented in Porto, Portugal. The 

interventions included the upgrade of roofs, windows and ventilation systems. One of the 

renovated neighbourhoods was chosen as case study for this work. The neighbourhood has 4 

detached buildings with similar typologies. The renovation work was performed in 2009 and 

2010 by two different companies, based on the same design project for all buildings. The 

neighbourhood has a total of 179 dwellings, including the following typologies: 19 T1 (1 

bedroom) dwellings, 31 T2, 72 T3, 56 T4 and 1 T5. 

In the retrofit solution, the original natural ventilation system was improved by introducing 

continuous mechanical extraction in the kitchens, including a fan of variable flow. A mechanical 

fan was installed in the bathrooms, to be turned on when the facility is used. In the main rooms 

self-regulating air inlets were installed. The laundry had a fixed air inlet of 1x30cm2. It must be 

stressed that the retrofitting process had several constraints, including a low budget and a very 

small allocation period of each dwelling tenants. 

The sample included 25 measured dwellings. The dimensions of the types subject to test and 

the number and total area of windows is presented in Table 2.4. 

Table 2.4 Dimensions of the Studied Dwellings. 

Typology 
Volume 

(m3) 

Net floor Area 

(m2) 

Exterior Walls 

Area 

(m2) 

Windows Area 

(m2) 

T1 100 40 44.3 9.4 

T3 160 64 36.8 12.1 

T4 – A 185 74 57.5 13.4 

T4 – B 185 74 46.8 13.4 

 

Additionally, a questionnaire was submitted to the users, collecting information for each of the 

days that measurements took place, including window opening action. 

This work was funded by FEDER funds through the Programa Operacional Factores de 

Competitividade – COMPETE and by National Funds through the FCT – Fundação para a Ciência 

e a Tecnologia on the frame of the project FCOMP-01-0124-FEDER-041748 and EXPL/ECM-

COM/1999/2013. 
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2.10 Sweden 

2.10.1 Future climate scenarios for Sweden [CTH] 

Division of Building Physics at Chalmers has collected a number of weather data parameters 

from different climate scenarios during a PhD project ‘Sustainability of the Swedish built 

environment towards climate change. Hygrothermal effects and design criteria for buildings 

with respect to future climate scenario’, performed by Vahid Nik during 2007 to 2012. The 

weather data have been received from a climate modelling research unit at SMHI - the Rossby 

Centre, and then processed to be applied in building physics applications. Examples of the data 

can be found in Figure 2.22 and Figure 2.23  below. More details about the data can be found in 

section 3.5.2. 

Building Physics Chalmers offers to act as a partner and support the development of the climate 

data sets for research. 

 
             Spring                  Summer 

 
          Autumn                   Winter 

Figure 2.22 Outdoor temperature distribution in Stockholm for different global climate models 

(GCMs) during 1961-1990. 
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             Spring                  Summer 

 
          Autumn                   Winter 

Figure 2.23 Outdoor temperature distribution in Stockholm for different GCMs during 2070-

2100. 

2.10.2 Source project for indoor moisture production simulation [CTH] 

The variability of the indoor moisture production has been simulated in 10000 Swedish 

households by taking into consideration magnitudes of various moisture sources, type of 

families and their living styles. The result from the simulations is based on measurements, 

statistical data and qualified assumptions. An example of the results can be seen in Figure 2.24.  

More details can be found in [53]. 
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Figure 2.24 The histograms present the result from 10000 simulations of the moisture production 

rate in Swedish multi-family dwellings. The number of households is fixed on either one, two or 

three family members. The moisture production rate is presented as an annual average rate per 

hour.  

2.10.3 Studied building – Case Sigtuna [LTH1] 

Building Physics at Lund University has collected a lot of measurements from two apartments in 

a two-storey building close to Stockholm. More information about the buildings can be found in 

[54]. The studied building is part of a block of approximately 50 similar two-storey buildings built 

between the years 1972 and 1973, see Figure 2.25. The buildings have no basement and the 

upper floor apartments are accessed by external galleries. The ground slab should supposedly 

have been poured on loose filled expanded clay aggregate but samplings could not confirm this 

in all locations. There are two types of external walls in the buildings. Loadbearing walls that 

originally consisted of exterior masonry veneer (120 mm), airspace (30 mm), mineral wool (110 

mm) and concrete (150 mm), see Figure 2.26 a). Curtain walls that were originally built up of 

masonry veneer (120 mm), airspace (30 mm), tempered hardboard, mineral wool and wooden 

studs(140 mm) and gypsum board with a plastic vapour retarding coating, Figure 2.26 b). District 

heating is being used for water and space heating, with hot water radiators typically placed 

below the windows. 
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Figure 2.25 Overview of the area with the studied building. 

 

 

 

 

 

a. b. 

Figure 2.26 a) Original exterior load-bearing wall (North & South). b) Original curtain wall (East). 

The building is situated at approximately 59° 38´ North and 17° 51´ East. 

2.10.3.1 Objective of the retrofit 

The goal of the municipal property owner was to reduce the total amount of bought energy 

(electricity and district heating) by 50 % and during the initial planning it was decided upon the 

listed improvements described in next subsection.With the energy use per square meter of 

heated floor area before improvements being approximately 177 kWh/m2 per year, the energy 

use after improvements should be at the most 89 kWh/m2 per year to be below 50 %, [55]. The 

Swedish governmental energy-demand at the time of the retrofit was 110 kWh/m2 per year for 

new-builds in southern Sweden, excluding household electricity. To meet, for example 

conservational aspects retrofitted buildings can if necessary be allowed to use more energy. As 

a part of the planning the property owner employed consultants to evaluate the resulting effect 

of the retrofits on moisture levels in the construction. This evaluation, which included one-

dimensional non-stationary moisture calculations and two-dimensional heat flow calculations, 

considered the measures later taken as sufficient. 

2.10.3.2 Retrofit 

The interior of the exterior walls of the house were retrofitted with 70 mm of mineral wool 

added between light-gauge steel studs and covered with polyethylene membrane and gypsum 

board. Existing gypsum board with a plastic coating on the old curtain walls was removed before 

adding the new layers, see Figure 2.29 and Figure 2.30. A thin and uneven layer of mineral wool 

in the attic is replaced with 400 mm of cellulose loose fill insulation. The ground-floor slab is 
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covered with a polyethylene membrane and 30 mm of polystyrene insulation below chipboard. 

The windows were upgraded with a new efficient inner pane and argon fill. The studied house 

has also been equipped with an air-to-air ventilation heat exchanger. As a part of the retrofit, 

kitchens and bathrooms were completely replaced and instrumentation allowing measurements 

of energy use (including domestic water, hot tap water and heating) were made in an effort to 

affect the behavior of the tenants, [55]. The choices concerning materials, design and execution 

of retrofit is entirely made by the property owner. 

2.10.3.3 Method 

Temperature and relative humidity in two apartments, outdoors and within the construction 

has been measured using silicon based relative humidity sensors. 

Measurements were started during the construction phase in April 2009 and continued in full 

scale till June 2013 with the exception of a few shorter power outs. Measurements of 

temperature and relative humidity are taken every five minutes at 20 different places within the 

walls, rooms as well as on the exterior. 

2.10.3.4 Measurement system 

The measurement setup uses a serial interface based on the RS-485 standard. A distributed bus 

network (Figure 2.27) with small addressed control circuits connected by 4-core telephone cable 

manages one temperature and relative humidity sensor each. The network is controlled by a 

small PC-computer accessible by a high-speed wireless internet connection. The wired sensors, 

as opposed to wireless battery powered sensors, make it possible to use higher sample-rates 

during longer time periods and considerably reduce the size of the built-in equipment. In an 

effort to reduce possible interference from the size and heat produced by the control circuitry, 

the sensor was separated by a wire, see Figure 2.28. 

 

Figure 2.27 The distributed bus network simplifies installation and reduces the amount of 

cabling. 
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Figure 2.28 Sensor and control circuit separated by wire. 

This is made possible without negative consequences due to the sensor’s digital data output. 

With the small size and a power consumption of 5 μW during stand-by the influence of the 

sensor should be minimal as long as care is taken during placement and wiring. 

2.10.3.5 Calibration 

All of the sensors that are used in the project are calibrated in a certified precision humidity 

chamber at Lund University. The calibration was made at six different relative humidity levels 

and two different temperatures. 

2.10.3.6 Placement of sensors 

Sensors were placed in the ground slab, in the ground sill near external corners and at three 

separate locations in the different layers of the wall, see Figure 2.29, Figure 2.30 and Figure 2.31. 

These sensors were placed at different depth and centered between studs to make it possible 

to later on compare measurements with one-dimensional simulations. Additionally two sensors 

were placed outside facing north as well as three sensors within the two studied apartments 

that were placed approximately two meters above the floor on interior walls to represent the 

average indoor environment. Only results from the sensors placed in the two apartments and 

outdoors will be presented in this study. 
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Figure 2.29 Exterior load-bearing wall (North and South) with new interior layer and sensor 

placements marked. 

 

Figure 2.30 Curtain wall (East) with new interior layer and sensor placements marked. 
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Figure 2.31 Placement of sensors in the building. A circle indicates sensors in a wall, square a sill 

and stars on the ground slab and triangle indoor sensors. 
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2.10.3.7 Findings during placement of sensors 

To comply with new governmental demands concerning accessibility for wheelchairs it was 

necessary widening some of the doorways. The procedure used cooling water which was 

allowed flooding on the newly grinded concrete floor, leaving large areas damp and noticeably 

wet surfaces several hours after the procedure. At some point urea-formaldehyde foam has 

been injected into many of the wall airspaces of the building. The foam was previously unknown 

and probably injected during the late 1970s, only a few years after the buildings were 

completed. 

2.10.4 Weather data for hygrothermal simulations [LTH2] 

Climate data for 4 cities (Lund, Stockholm, Borlänge, Luleå) in Sweden are provided. 

The data is adapted for the WUFI *.wac format and as Excel files and includes: 

• Temperature (°C  ); 

• Relative humidity (0 – 100 %); 

• Global solar radiation on horizontal surface (W/m2); 

• Diffuse solar radiation on horizontal surface (W/m2); 

• Longwave (sky) radiation on horizontal surface (W/m2); 

• Precipitation (mm/h); 

• Wind direction (0-360°); 

• Wind speed (m/s). 

The data is based on 9 consecutive years of measured data (90-98). When this raw data was 

analysed it was noted that: 

• There were periods of completely missing data; 

• The precipitation was measured on 12 or 24 hour basis; 

• There were periods of missing long wave (sky) radiation data. 

The relative humidity was clearly erroneous due to sensors being stuck in states where 95 % 

relative humidity was never reached or sudden leaps in sensor behaviour. (Perhaps due to 

adjustment or battery change.) 

2.10.5 Airtightness measurements in renovated Swedish buildings [SP] 

Airtightness measurements were performed in Swedish buildings in the following conditions: 

• Measured values are for individual apartments  

• In some cases measurements are reported  before and after renovation but mostly 

before renovation  

• No measures are taken to avoid air leakage to adjacent apartments during airtightness 

measurements 

• The air leakage is given as air leakage rate (l/s liter per second), as air leakage rate per 

m2 (that is envelope area facing the outside, not including envelope area facing adjacent 
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apartments, l/s m2) and as air change rate at 50 Pa n50 (this rate is usually not reported 

in Sweden and in some cases the volume of the tested object have been approximated). 
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2.11 United Kingdom [UCL] – The Warm 

Front study 

Warm Front was a government-funded energy efficiency initiative running between 2000-2013, 

targeted at providing grants for energy efficiency improvements to vulnerable households in 

England to tackle fuel poverty. Grants were provided for the installation of cavity wall insulation, 

loft insulation, draught proofing, and depending on the householder’s qualification for the 

scheme, the option of gas wall convector heaters or a gas central heating system. The Warm 

Front Study (WFS) aimed to examine the effect of this major domestic energy efficiency 

refurbishment programme on winter internal temperatures [56], risk of mould growth [57], 

domestic space heating fuel consumption [58], thermal comfort [59], and the temperature 

‘take-back factor’ [60]. This report summarizes the data collected and analysed in this series of 

papers and presents them in a format useful for stochastic analyses. 

A sample of 3099 dwellings from five urban areas of England (Birmingham, Liverpool, 

Manchester, Newcastle, and Southampton) were surveyed, interviewed, and monitored over 

two successive winters (2001/2002 and 2002/2003) to reflect the effects of a wide range of 

environments and housing types. The dwellings (Figure 2.32) were a mixture of properties which 

had received Warm Front interventions mostly in the preceding six months and those due to 

receive interventions. 3489 sets of data were collected with 390 properties surveyed both pre-

intervention in 2001/2002 and post-intervention in 2002/2003. 

  

  

Figure 2.32 A selection of dwellings forming part of the Warm Front sample. 
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The main conclusions of this study were: 

1. Air infiltration rate measurements demonstrated that Warm Front interventions 

designed to increase air-tightness may have little effect if a gas central heating system 

is additionally installed, particularly where the pipe work is laid under the suspended 

floor boards. 

2. Warm Front interventions result in higher internal temperatures in the bedroom and 

living room (by about 2oC). Installing a heating system and insulation simultaneously is 

most effective, followed by installing a heating system only, and then installing 

insulation only. 

3. Cavity wall and loft insulation interventions were found to reduce the space heating fuel 

consumption by 10 % in centrally heated properties and 17 % in non-centrally heating 

properties. The introduction of a gas central heating system however had no significant 

impact in reducing fuel consumption. 

4. The higher internal temperatures resulting from Warm Front interventions lead to lower 

relative humidities and therefore a lower incidence of mould. 
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3 INPUT	DATA	
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3.1 Introduction 

In this chapter input data is presented and divided into the categories described below. Different 

codes may require different sets of stochastic data, which means that these cannot be 

considered ready to use stochastic sets but rather a base for each practitioner to build his 

required set of input data. 

Stochastic material data base: The source of uncertainty in the material data was addressed and 

uncertainty in different data levels was analysed. 

Ventilation and airtightness: Analysis of n50 parameter in units with different characteristics 

(Blower door mechanism, CO2 and tracer gas measurements were used). 

Correlations between the air change rate and the values collected related to outdoor 

temperatures, moisture production, building age, window type, unit height, structural system, 

ventilation system, building size, number of occupants and window opening activity, were 

established. 

Indoor loads: Indoor temperature and humidity distributions were recorded for different rooms 

at different times of the year. Also CO2 concentrations were analyzed and correlated with 

relative humidity values presented by buildings with different construction materials. 

Weather: The variability of diverse climates was recorded and correlated with pre-existing data, 

allowing for extrapolation. 

Each subchapter is arranged so that each set of collected raw data is introduced. The analysis to 

derive statistical distributions that was performed on the raw data is explained and the final 

stochastic data sets are presented. The focus was put on ensuring that the connection to 

measured data wouldn’t be lost. 
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3.2 Stochastic material data base: 

Germany [TUD] 

3.2.1 Concept of building a stochastic material data base 

Uncertainty in material properties may result from the material’s natural inhomogeneity, the 

production and measurement, and modelling methodology concerning the functionalization of 

material data [18]. 

Material data can be presented in the following forms: 

• A specific material is an individual material, usually associated with a specific producer. 

It has its particular name to differentiate from others. Its material properties are 

obtained by measuring representative samples of the production line; 

• A generic material is a “derived” or “artificial” material from one material cluster. First, 

material cluster is identified from a collection of specific materials, according to the 

similarity between specific materials by comparing their differences. Then, synthetic 

process is applied to derive a generic material from each identified cluster. Generic 

material represents one type of specific materials which have similar characteristics. 

The definitions of these terms can be exemplified as follows: historical "brick ZM" and "brick ZE" 

are specific materials. These two bricks have similar material properties and can be grouped into 

a brick cluster called “historical brick fabricated by the classic loam and clay”, represented by 

one generic material named “historical building brick”. 

3.2.1.1 Uncertainty in specific material 

Material properties include basic parameters and functionalized data. Figure 3.1 presents a 

template for characterization of specific material in a stochastic material data base. In the 

template, hygrothermal basic parameters contain general material properties, e.g., density and 

thermal conductivity obtained from standard measurement procedure. In additional, measured 

data related to moisture storage and moisture transport is used to further generate continuous 

functionalized data, e.g., moisture retention curve and liquid water conductivity function. The 

template accounts for uncertainty in material properties using the statistical data from 

experimental measurements: mean value, standard deviation, maximum, and minimum values 

calculated from several specimens. This approach is straightforward and considers the possible 

range of each property of a specific material. The limitation is that adequate specimens are 

required to get reliable statistical information, especially for the inhomogeneous materials. 
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Figure 3.1 Data summary sheet of brick Wienerberger. 

The functionalized data, also called material functions, correspond to properties that are 

dependent on state variables such as moisture content. It suffers from the uncertainty in the 

relevant basic material parameters, depending on the adopted mathematical model. For 

instance, open porosity and water vapour diffusion resistance factor are related to water vapour 

permeability function; effective saturation moisture content is the upper limit of moisture 

content in moisture retention function and liquid water conductivity function. When those basic 

parameters vary, the corresponding material functions will also shift in a certain range. For the 

engineering model [61], material functions and related basic material parameters are listed in 

Table 3.1. 

Hygrothermal basic parameters

Parameter Symbol Unit Mean StdDev Min Max Remarks

Bulk density ρ [kg/m3] 1786.2 9.3 1770.7 1805.2

Specific heat 
capacity c [J/kgK] 889 10.8 872 901

Thermal 
conductivity λdry [W/mK] 0.548 0.042 0.492 0.612

Open Porosity θpor [m3/m3] 0.354 0.003 0.347 0.359

Capillary 
saturation θcap [m3/m3] 0.262 0.004 0.259 0.267

Dry cup value µdry 
[---] 18.01 0.32 17.78 18.24

Water absorption 
coefficient Aw [kg/m2s0.5] 0.199 0.015 0.181 0.209

Water Retention (Desorption)

Arguments Mean StdDev Min Max Remarks
pc T θ l

[hPa] [°C] [m3/m3]
0 20.0 0.319 0.005 0.308 0.323

50 20.0 0.301 0.005 0.295 0.310
100 22.3 0.299 0.005 0.294 0.308
300 18.5 0.291 0.006 0.285 0.303
600 14.0 0.275 0.007 0.269 0.287

1000 21.8 0.265 0.007 0.258 0.278
2000 23.5 0.209 0.013 0.187 0.228
3000 22.0 0.172 0.013 0.148 0.196
4000 22.7 0.143 0.011 0.123 0.160

10000 22.9 0.103 0.009 0.086 0.113
14000 20.5 0.075 0.009 0.060 0.088

Sorption Isotherm (Desorption)

Arguments Mean StdDev Min Max Remarks
ϕ T θ l

[%] [°C] [m3/m3]
96.9 21.4 0.033 0.007 0.024 0.045
96.0 22.4 0.026 0.006 0.018 0.035
90.0 20.2 0.019 0.004 0.014 0.023
84.3 22.9 0.016 0.003 0.013 0.019
75.2 21.4 0.010 0.001 0.008 0.012
57.6 22.4 0.006 0.000 0.005 0.007
43.2 20.2 0.004 0.000 0.004 0.004
32.8 22.2 0.002 0.001 0.000 0.003

Water vapor permeability

Arguments Mean StdDev Min Max Remarks
φinside φoutside µ

[%] [%] [-]
5.0 37.0 18.01 0.32 17.78 18.24 DryCup

84.0 53.0 12.04 2.18 10.50 13.58 Wetcup

Liquid water conductivity

Arguments Mean StdDev Min Max Remarks
θ l mean pc Kl

[m3/m3] [Pa] [s]
0.304 8560 2.0E-09 3.1E-10 1.5E-09 2.3E-09

Sorption Isotherm (Adsorption)

Arguments Mean StdDev Min Max Remarks
ϕ T θ l

[%] [°C] [m3/m3]
32.8 20.40 0.00050 0.00019 0.00021 0.00071
43.2 24.20 0.00123 0.00019 0.00091 0.00144
57.6 20.60 0.00180 0.00034 0.00121 0.00213
75.2 20.40 0.00267 0.00043 0.00195 0.00308
84.3 24.20 0.00488 0.00055 0.00372 0.00547
90.0 20.60 0.00630 0.00048 0.00554 0.00708
96.0 20.60 0.00901 0.00086 0.00808 0.01029
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Table 3.1 Material functions and their related material parameters. 

Material function Unit  Symbol  
Parameters that affect 

material function 

Moisture retention function m3/m3 θ(pC) θ eff 

Water vapour permeability s Kv(θ) θpor and μdry 

Liquid water conductivity s Kl(θ) θeff and Keff 

Thermal conductivity  W/m·K λ(θ) θeff 

 

Moisture retention curve, thermal conductivity, water vapour permeability and liquid water 

conductivity of brick with the uncertainty are shown in Figure 3.2 [18].  In each graph, the red 

curve presents the design material function for the deterministic simulation. The grey shadow 

region is the possible variation range of material functions obtained from total 400 randomly 

generated samples. 

 

Figure 3.2 Material functions of brick a) moisture retention curve b) thermal conductivity c) water 

vapour permeability d) liquid water conductivity. 

3.2.1.2 Uncertainty in generic material 

Generic material is a derived material that represents one type of specific materials with 

common characteristics in material properties. Application of generic material in the 

hygrothermal simulation has the distinctive advantages. No detailed material information is 
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required any more in the building design stage, only the knowledge of the type of the material 

is sufficient. The generic material can be instead applied in the simulation to reduce the risk of 

improper selection of specific material properties and increase the reliability of the simulation 

results. Moreover, generic materials can be applied to qualify the incomplete material data [62]. 

To obtain generic material, cluster analysis is first applied to identify material clusters from a 

bunch of specific materials in material category. Cluster analysis is a multivariate procedure for 

exploring natural groups in data so that the objects or individuals in one group are similar to 

each other and different from the individuals in the other groups [63]. The clustering is a process 

that successively fuses specific materials into groups until a single group containing all the 

specific materials, as shown in Figure 3.3.   

 

Figure 3.3 The process of clustering individuals to a single group. 

Cluster analysis relies on criterion variables that determine based on which standard the 

distance is measured between two individuals or groups. In [18], the selected criterion variables 

include basic material parameters and characteristic moisture contents, in consideration of 

correlations between material parameters. The dissimilarity between two specific materials is 

determined by their distance. The Euclidean distance is most commonly used to determine the 

dissimilarity between two objects. The larger the distance, the more dissimilar two specific 

materials. The most similar specific materials are then aggregated into one cluster. The distance 

between clusters or groups of materials depends on the select algorithms, e.g., complete linkage 

and ward’s method [63]. The clustering results may not be the same by applying different 

algorithms. 

Here, one example to derive generic materials from a group of 23 specific bricks in brick category 

is presented. First, the Euclidean distance between each pair of specific bricks is calculated. The 

specific bricks with the smallest distance are joined into one cluster. Thereafter, the complete 

linkage and Ward’s clustering methods were applied to calculate the distance between different 

clusters or groups of specific bricks. The “closest” clusters or groups of individuals are fused 

together. This clustering process continues until all the specific bricks are agglomerated to one 

set. The tree diagrams of the clustering results are presented in Figure 3.4. 
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Figure 3.4 Tree diagrams of clustering of specific bricks by using complete linkage method and 

ward’s method. 

As presented in Figure 3.4, both clustering methods identify four clusters among 23 specific 

bricks: Cluster 1 includes bricks ZN and ZI. Cluster 2 contains bricks ZB, ZE, ZG, ZK, ZM, ZBA, ZJN, 

and ZWB. Cluster 3 is comprised of bricks ZA, ZD, ZJ, ZH, ZL, and ZGZ. And cluster 4 includes bricks 

ZC, ZF, ZO, ZP, ZQ, ZBD, and ZHS. Moisture storage data of the specific bricks in each cluster are 

demonstrated, respectively, in Figure 3.5 [18]. 
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Figure 3.5 Measured moisture storage data and their means in each cluster. 

Once the material clusters are identified, the generic synthesis process is conducted thereafter. 

The properties of generic brick can be gained by arithmetically averaging material properties of 

the specific bricks in one cluster. Thus, the generic brick has the common characteristics of one 

type of the specific bricks with a relatively small deviation in the material property. 

Each material property of a generic material also includes statistical information, e.g., maximum, 

minimum, mean value, and standard deviation, which summarizes the material properties of 

specific materials in one material cluster. Comparing to the deviation in material property of a 

specific material which accounts for the uncertainty among the specimens, the deviation in 

material properties of a generic material provides the knowledge of the possible variation range 

of material property of this type of specific materials in the stochastic simulations. Thus, generic 

materials, together with specific materials, comprise of a stochastic material database. 

3.2.2 Probability distribution of material properties 

Uncertainty can be quantified from a probability distribution, which approximates the possible 

range and distribution of the variable. Probability distribution of the inputs will influence the 

range and distribution of the outputs, thus they should be carefully selected. Three statistical 

tests were carried out in the analysis of the distribution of material property: Chi-squared test, 

Kolmogorov-Smirnov test (K-S test), and Shapiro-Wilk test (S-W test). Chi-squared test and 
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Kolmogorov-Smirnov test can test if the data follows the specified distribution. Shapiro-Wilk test 

is used to examine if the sample is drawn from a normally distributed population. The null 

hypothesis is that the data comes from a particular theoretical distribution. The null hypothesis 

is accepted, if the calculated p-value is larger than the predefined significance level α.  

As stated in [18], building materials can be classified into thirteen categories according to their 

physical properties and usages in the building components. Each material category has its 

characteristics, so probability distribution of material property was investigated in the scope of 

material category. Material data collected from IBK laboratory measurement (TUD), [64], [65], 

and [66] were analysed.  

Probability density functions of material properties in building brick category, plaster and mortar 

category, natural stone category, and insulation category were evaluated. Histogram plots of 

density, specific heat capacity, thermal conductivity, capillary saturation moisture content, 

effective saturation moisture content, water absorption coefficient, liquid water conductivity at 

saturation moisture content, and water vapour diffusion resistance factor were presented in the 

Appendix 3.1.4. The number of materials analysed for each property was also indicated. Chi-

squared test, Kolmogorov-Smirnov test, and Shapiro-Wilk test were conducted for each material 

category. The significance level α is set to 0.05. 

3.2.3 Material data template 

The first part of the data sheet includes general information related to material identification, 

e.g., its category and the producing method. Those descriptions give an insight into the 

material’s natural characteristics. Good data organization is convenient to quickly search and 

investigate materials. For easy organization, each material is classified into certain material 

categories. Table 3.2 lists total thirteen material categories. Each material will be assigned to at 

least one but no more than three categories [18].  

Table 3.2 Material category for data organization. 

Category Material description 

01 Coating  

02 Plaster/ mortar  

03 Building brick  

04 Natural stone  

05 Cement containing building material  

06 Insulation material  

07 Building board  

08 Wood  

09 Natural material  

10 Soil  

11 Cladding panel and ceramic tile  

12 Foil and waterproofing product  

13 Miscellaneous  
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Some measurements aim to obtain basic parameters, e.g., thermal conductivity and specific 

heat capacity, while others are designed for further material modelling, e.g., water vapour 

permeability and water retention measurements. For the functional data, the measurement 

conditions are listed, e.g., pressure, relative humidity and temperature at which the 

measurements are executed. The statistical data from those measurements, including mean, 

maximum, minimum and standard deviation, is summarized in the data sheet, respectively. In 

addition, the special comment regarding to the measurement can be added into each "Remarks" 

column. 

3.2.4 Appendix 

Histogram plots and statistical analyses of material properties of bricks are presented in Figure 

3.6, Figure 3.7, Figure 3.8, and Figure 3.9. 
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Figure 3.6 Histogram plots and statistical analyses of material properties of bricks. 
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Figure 3.7 Histogram plots and statistical analyses of material properties of natural stones. 
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Figure 3.8 Histogram plots and statistical analyses of material properties of plasters and mortars. 
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Distribution: Lognormal Number of materials: 65
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Chi-square test statistic = 3.148, df = 4, p-value = 0.533
K-S test statistic = 0.116, Lilliefors Probability (2-tail) = 0.030
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Distribution: Lognormal Number of materials: 49
Location = 2.617, Scale = 0.393
Chi-square test statistic = 8.73, df = 5, p-value = 0.120
K-Stest statistic = 0.116, Lilliefors Probability (2-tail) = 0.042
S-W test statistic = 0.968, p-value = 0.11
Note: Materials with μ values larger than 40 are excluded.

Water vapor diffusion resistance factor (LN(-)) Materials with μ values larger than
40 are excluded
(in normal scale)

All the values are included
(in normal scale)
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Figure 3.9 Histogram plots and statistical analyses of material properties of insulations. 
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3.3 Ventilation and airtightness 

3.3.1 Belgium input - Air tightness of 54 new Flemish dwellings (IWT TETRA 

BEP2020) – [KUL] 

The air change rates at 50Pa pressure difference (n50) of 54 new dwellings were collected in 

Flanders, Belgium, between 2010 and 2013. In addition to this data, insulation level (the so-

called K-level, which corresponds to a kind of overall heat loss coefficient (HLC)), energy 

performance indicator (E-level corresponding regional EPBD-regulation), typology, compactness 

and internal volume are collected as well. 

The air tightness measurements in this project were performed by several researchers and 

equipment, but are all based on standard   
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[1], which makes them comparable. However, it is possible that the execution of the 

measurements influenced the results. Measurement errors can be expected for both flow 

measurement and dimensions.  

The cumulative distribution function of the n50 values is shown in Figure 3.10.The average value 

of the sample is 2.22 h-1 with standard deviation 2.38 h-1. Correlations between the input 

parameters were investigated. A strong correlation was found between the n50 values and both 

overall HLC and E-level, which are correlated as well. This indicated that dwellings are more 

airtight when attention is paid for the energy performance and thus also insulation level of the 

dwellings (see Figure 3.11). Note that in Belgium for passive house certificates a n50 value lower 

than 0.6h-1 is required. In other cases, there are no requirements regarding air tightness.  

To investigate other parameters influencing the air tightness, more measurements and more 

details on the dwellings are needed. Nevertheless, the measured n50 values reflect the spread 

on air tightness for newly built dwellings in Flanders, Belgium. 

 

Figure 3.10 Cumulative distribution function of measured n50 values. 
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Figure 3.11 Scatter plot of n50 value and E-level (based on EPBD-regulation) of dwellings. 

3.3.2 Denmark input 

The collected data that is presented in the following text was obtained as part of the Indoor 

Environment and Children's Health (IECH) study undertaken by DTU. A short introduction to the 

research project can be found in section 2.4 that containing the contribution from Denmark 

(DTU). 

The following text contains a description of the method used to calculate the air changes in 500 

Danish family homes. The report also includes simple graphs depicting correlations between 

proxies for occupant behaviour (air changes and moisture excess) and ambient environment. 

For the Annex, the data is divided in two groups: Single and multi-family homes. Of the 500 

family homes 440 are single and 60 are multi-family homes. All data is from measurements done 

in Odense, Denmark, between 10 March and 18 May 2008.  

3.3.2.1 Method 

The method section is an excerpt from [67]. The excerpt has been edited lightly to conform to 

the purposes of Annex 55. 

The homes of the children were located within a radius of 20 km from the city centre. In order 

to estimate the CO2 emission rate in the room during the period of the measurements, the 

parents were asked to record the number of occupants in the room for each day and each night 

[68], [69]. They were also asked to record if anyone left the room for a longer period during the 

night. They provided the weight and height of each person sleeping in the room and they 

indicated in a diary whether the windows and doors were closed, ajar or fully open during the 

monitored days and nights. The families were asked to maintain their regular routine regarding 

opening the doors and windows. The volumes of all the rooms were measured by the research 

teams. The measurements were performed between 10 March and 18 May 2008. 

Carbon dioxide data obtained in the time period between 21:00h and 7:00h each measured 

night, were extracted for data analyses and calculation of the ventilation rate [68], [69]. This 
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time period was selected to represent the conditions when the child spent most of the time in 

his/her room. The activity and occupancy were assumed to be constant during the night, unless 

otherwise indicated by the parents. When these factors were known to change during the night, 

the night period was divided into shorter periods and the ventilation rate was determined 

separately for the period with known occupancy. Data from periods when the child was not in 

the room were omitted. 

Three different patterns in the obtained CO2 concentrations were used to estimate the 

ventilation rate in the room for the respective night: 

• Concentration build-up: Primarily, periods of clear concentration build-ups were used 

to calculate the ventilation rate. When the data were noisy and the behaviour in the 

room was not well documented, the initial concentration build-up was the only one 

used. A spread sheet (Excel) was developed to estimate the air change rate in the room 

by fitting a non-linear curve to the measured pattern of the CO2 concentration at a given 

CO2 emission rate (calculated from the data obtained from the parents), room volume 

and outdoor CO2 concentration. The spread sheet employed the carbon dioxide mass 

balance equation. 

• Concentration decay: Decays of the CO2 concentration were only used when the 

occupancy and behaviour in the room were precisely documented for the entire night. 

The spread sheet described above was used for the calculation. 

• Steady-state concentration: Occasionally, no well-defined build-up or decay was 

available within the selected data. In such a case the ventilation rate was predicted using 

a mass balance model applied on the estimated steady-stateCO2 concentration. 

Only the most trustworthy fractions of the 10-hour period extracted for each night were used 

for further data treatment. The final estimated ventilation rate in a bedroom is the time-

weighted average of the ventilation rates obtained for each relevant time period. The ventilation 

rates were estimated using the average outdoor CO2 concentration over the 10-week 

experimental period. 

The average and the highest 20-minute running average of the CO2 concentration were 

determined for each bedroom. The same time periods as for calculating the ventilation rate, 

were used to determine the average and highest CO2 concentration. 

3.3.2.2 Collected raw data 

To see the indoor CO2 concentration levels measured in the children’s bedrooms, then see 

section 3.4.2. This chapter and section focuses solely on the air changes. The air changes are 

calculated on the data on CO2 concentration levels presented in section 3.4.2. 

The measurements were performed between 10 March and 18 May 2008. The distribution of 

indoor air change rates can be described by the log-normal distribution. 
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Table 3.3 Air changes calculated for family homes in Denmark in spring 2008. 

Air changes [h-1] All homes (500) Single-family (440) Multi-family (60) 

Average 0.61 0.63 0.48 

Median 0.46 0.47 0.37 

Standard Deviation 0.53 0.55 0.38 

Confidence Interval95 0.56 0.58 0.39 

 0.66 0.68 0.58 

Maximum 4.72 4.72 2.52 

Minimum 0.05 0.05 0.10 

 

Standard deviations are calculated using theory applicable for samples and log-normal 

distributions. The confidence intervals are calculated using modified version of the Cox method 

[70] using the Student’s t variate, instead of the standard normal z variate, for a α-value of 0.05; 

this gives 95 % confidence intervals. 

For reference the outdoor temperature distribution in the measured period has been listed 

below. The table contains the same data as Table 3.12 presented in section 3.4.2. 

Table 3.4 Outdoor temperature distribution in % in measured period. 

Temperatures [°C] Distribution [%] 

>30 0.4 

30>X≥ 25 4.6 

25>X≥20 10.0 

20>X≥15 13.7 

15>X≥10 25.6 

10>X≥5 26.0 

5>X≥0 15.2 

0>X≥-5 4.4 

-5> 0.2 

 

The following graphs (Figure 3.12,Figure 3.13 and Figure 3.14) display the data collected on 

indoor air change rates in Danish homes along with probability functions and probability density 

functions (PDF). The probability functions are calculated as the frequency of a measurement 

occurring in a bin (air change rate interval) divided by the total amount of bins. The displayed 

probability density functions have been drawn from their respective means and standard 

deviations and the calculated probability of occurrences in the individual bins. 



Annex 55 RAP-Retro  63 Subtask 1: Stochastic data 

Figure 3.12 Distribution and PDF of indoor air 

change rates in Danish single-family homes. 

Figure 3.13 Distribution and PDF of indoor air 

change rates in Danish multi-family homes. 

 

Figure 3.14 Distribution and PDF of indoor air change rates in general Danish family homes. 

3.3.2.3 Analysis 

3.3.2.3.1 Air change rates 

Figure 3.15 and Figure 3.16 show how outdoor temperatures influence air changes (n) in Danish 

homes. Due to a lack of weather data for the first few days of the study it is only data from 480 

of the 500 homes that is included in the figures (18 single-family and 2 multi-family homes are 

missing). The air change levels are stable over the temperature variations in the measured 

period. In Denmark it is uncommon to have mechanical ventilation systems in homes; therefore 

venting (airing out by opening windows) is the most common form of cooling found in Denmark. 

Venting a home without changing other occupant behaviour significantly will result in air change 

levels to rise. So it would be expected that families will open windows more during periods with 

higher temperatures. The presented data does not support this chain of reasoning. 

However, the data used to calculate the air changes is from 22:00h to 7:00h, which is the night 

time. The period during which measurements were done was during the Danish spring. Nights 

would have been relatively cool. It is considered unlikely that people who did not keep windows 

open in colder periods would have opened them during this spring. 

So the presented data represents the air changes present in homes with closed windows and 

doors. This presented data can be said to be the base air change for the homes. 



Annex 55 RAP-Retro  64 Subtask 1: Stochastic data 

Figure 3.15 Correlation between air change 

rates (n) and outdoor temperatures in single-

family homes. 

Figure 3.16 Correlation between air change 

rates (n) and outdoor temperatures in multi-

family homes. 

The air changes were calculated using occupant generated CO2 as a tracer gas. Using this method 

introduces possible errors. Discussing these errors is outside the scope of this report. For a 

discussion regarding the possible errors introduced with this procedure, see [67] and Appendix A 

[71]. The APPENDIX is a (unpublished) conference paper written for the Indoor Air 2011 

conference held in Austin, Texas. The paper discusses the findings of a research project where 

three methods used to determine the air change of a home are compared. The three methods 

are the occupant-generated CO2 method, the tracer gas method (TG) and the passive tracer gas 

method (PFT). 

A single zone mass balance of occupant generated CO2 was used to calculate the ventilation rate 

during 4 to 5 nights in each bedroom of the five Danish homes. Only data from night periods 

was used. At the same time the air change rates in the homes were measured using Freon® as a 

tracer gas. Constant concentrations of the tracer gas was maintained throughout the dwellings, 

with a tracer gas dosing and sampling point in up to six rooms in each home, including the 

bedrooms. These measurements were conducted in all four seasons of the year. 

Passive tracer gas (PFT) measurements of the average monthly air changes for the entire 

dwellings were also done in the five homes. The measurements were done during the winter 

season in time periods comparable with the periods the active tracer gas measurements were 

done. 

Some of the findings of the research project are shown in Figure 3.17. The figure compares the 

air changes as they were determined by the occupant generated CO2 method with air changes 

determined by the tracer gas method. The figure show how the total ventilation rates 

(influenced by airflows both from outdoors and adjacent spaces) determined by the CO2 method 

were several times larger than the outdoor ventilation rates obtained by the guarded tracer gas 

measurement. 
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Figure 3.17 Comparison of air changes rates as determined by the occupant generated CO2 

method and the tracer gas method using Freon® as tracer gas. 

The active tracer gas method is widely believed to be the most accurate ventilation method 

available in buildings where multi-zone effects are important. The results from the research 

projects suggest that the total ventilation rates calculated from the IECH data are higher than 

the outdoor ventilation rates. This in turn suggests that using the occupant generated CO2 

method to determine air changes leads to overestimating overall air changes for multi-zone 

homes. 

Danish homes are supposed to have a minimum air change of 0.5 h-1. The calculated average air 

change for single-family homes is 0.64 h-1 and 0.49 h-1 for multi-family homes. With respective 

medians values of 0.44 and 0.38 h-1 it can be seen that more than half of the participating homes 

have air changes below the minimum requirement. Considering the above brief discussion of 

the quality of the method used and the possible effects on the resulting calculated air changes, 

it is quite possible that the air changes in Danish homes are even lower than those presented in 

the tables above. 

In conclusion it can be said that outdoor ventilation rates in ordinary Danish homes a low and 

that the presented air changes are subjected to sources of error. The reported air changes are 

quite possibly higher than the actual air changes present in Danish homes. However, the spread 

(calculated variances) in the results is believed to be accurate to the extent of the purposes of 

Annex 55. 

3.3.2.3.2 Air change rates and moisture excesses 

Figure 3.18 and Figure 3.19 show how air changes influence moisture excess in Danish homes. 

Moisture excess levels can be seen to be falling with rising air changes. This is as could be 

expected. With higher ventilation rates the indoor absolute humidity levels will come to be 

closer to outdoor levels, which, more often than not, are lower. 
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Figure 3.18 Correlation between moisture 

excesses (moisture production) and air 

change rates (n) in single-family homes. 

Figure 3.19 Correlation between moisture 

excesses (moisture production) and air 

change rates (n) in multi-family homes. 

The homes included in the above graphical representations of the dependence of indoor 

moisture excess levels on air changes per hour are 20 less (18 single-family and 2 multi-family 

homes) than the overall total of homes included in the study. This is due to a lack of weather 

data for the first few days of the study. 

3.3.3 Estonia [TTU] – Ventilation and airtightness in Estonian buildings 

3.3.3.1 Performance of ventilation 

According to standard [72] ventilation airflow in bedrooms should be at least 1 l/(s·m2) for indoor 

climate category II and at least 0.6 l/(s·m2) for indoor climate category III. 

The average ventilation airflow in bedrooms of brick apartment buildings was 0.46 l/(s·m2) 

(st.deviation 0.29 l/(s·m2)), see Figure 3.20. Air flow per person was between 

0.5…9.3 l/(s·person) with average value of 3.8 l/(s·person). Average air change in bedrooms was 

0.65 h-1 (st.deviation 0.41 h-1); variation from different apartments was 0.10…1.5 h-1. 

 

Figure 3.20 Ventilation airflow rates in bedrooms of brick apartment buildings. 

During winter the average ventilation airflow in bedrooms of wooden apartment buildings was 

0.43 l/(s·m2) (st.deviation 0.32 l/(s·m2)), see Figure 3.21 left. Air flow per person was between 

1.0…10.3 l/(s·person) with average value was 3.7 l/(s·person). Average air change in bedrooms 

was 0.56 h-1 (st.deviation 0.32 h-1); variation from different apartments was 0.12…2.0 h-1. 
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During summer the average ventilation airflow in bedrooms of wooden apartment buildings was 

0.58 l/(s·m2) (st.deviation 0.44 l/(s·m2)), see Figure 3.21 right. Air flow per person was between 

1.5…8.4 l/(s·person) with average value was 3.9 l/(s·person). Average air change in bedrooms 

was 0.79 h-1 (st.deviation 0.60 h-1); variation from different apartments was 0.09…2.2 h-1. 

Ventilation airflow was compared in wooden apartment buildings between apartments with old-

original windows and changed-modern windows. In apartments with old-original windows the 

airflow was 0.12…1.1 h-1and average was 0.45 h-1. In apartments with modern-changed windows 

the airflow was 0.12…1.2 h-1and average was 0.57 h-1. The difference in airflows between 

changed and original windows was not significant. 

Figure 3.21 Ventilation air flow in bedrooms of wooden apartment buildings during winter (left) 

and summer (right). 

3.3.3.2 Airtightness of building envelope 

Average air leakage rate of building envelope of brick apartment building was q50 = 4.0 m3/(h⋅m2) 

(st.dev = 1.4 m3/(h⋅m2)) and air leakage rate @ 50Pa wasn50 = 5.7 h-1 (st.dev = 2.0 m3/(h⋅m2)), see 

Figure 3.22. Older buildings were slightly leakier (see Figure 3.23 left), but due to the large 

variation in results the difference was not significant. In comparison of airtightness with changed 

windows and old windows difference was not significant (p=0.37), see Figure 3.23 (right).  

Figure 3.22 Air leakage rate q50 (left) and air change rate @ 50Pa n50 (right) of brick apartment 

buildings. 
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Figure 3.23 The influence of age of building (left) and the type of windows (right) on air tightness 

of brick apartment buildings. 

Average air leakage rate of wooden apartment building was q50 = 9.7 m3/(h⋅m2) 

(st.dev = 4.0 m3/(h⋅m2)) and air leakage rate @ 50Pa wasn50 = 13 h-1 (st.dev = 4.9 m3/(h⋅m2)), see 

Figure 3.24. Older buildings were slightly leakier (see Figure 3.25 left), but due to the large 

variation in results the difference was not significant. In comparison of apartments in upper and 

bottom floor, apartments in upper floor were significantly leakier due to leaky attic floor, see 

Figure 3.25 right). The change or restoration of windows did not influence significantly the 

airtightness of windows. 

Figure 3.24 Air leakage rate q50 (left) and air change rate @ 50Pa n50 (right) of wooden apartment 

buildings. 
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Figure 3.25 The influence of age of building (left) and the floor of the apartment (right) on air 

tightness of wooden apartment buildings. 

Occupants’ opinions concerning indoor climate and thermal comfort collected from the 

questionnaires and the results of air tightness measurements were compared. According to the 

questionnaire, the main problems in apartments with large air leakage rate were too dry air 

(significant difference during winter and summer), uniformity and unstability of temperatures 

in apartments, Figure 3.26. 

 

Figure 3.26 The difference in airtightness in apartment divided according to opinion of 

inhabitants. 

3.3.4 Finland [TUT] – AISE and KVTP –projects 

Airtightness values n50 and q50 are greater than or equal to zero. If normal distribution is used to 

describe these or other values with similar physical restrictions, then additional conditions (e.g. 

q50 ≥ 0 m3/(m2h)) must be used when creating random numbers from that distribution. Another 

possibility would be to use some non-negative distribution with suitable parameters or the 

original probabilities of the measurement sample. 

3.3.4.1 Ventilation in timber-framed and heavy weight detached houses 

Air change rates in 100 timber-framed and 70 heavyweight detached houses were analyzed. The 

measurements have been done with Airflow LCA 6000 VA -vane anemometer by measuring the 

exhaust air flow rates at every exhaust ventilator at the operation level of the ventilation 

machine. The distribution of air change rates for timber-framed houses is shown in Figure 3.27 

and for heavyweight houses in Figure 3.28. Also normality of the data has been investigated by 
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plotting the normal probability plots. It seems that the air change rate is almost normally 

distributed. 

 

Figure 3.27 Distribution and normal probability plots for air change rate [h-1] in timber-framed 

houses according to ventilation type.   

Figure 3.28 Distribution and normal probability plots for air change rate [h-1] in heavy-weight 

houses according to ventilation type.   

The average and standard deviation of air change rates according to ventilation type (mechanical 

exhaust or mechanical supply and exhaust) are shown in Figure 3.29. Average air change rate 

for all detached houses was 0.39 h-1 (st.dev. 0.16). 

  

 

 

0

5

10

15

20

25

30

35

P
ro

ce
n

t 
o

f 
h

o
u

se
s 

[%
]

Air change rate [1/h]

Mechanical exhaust 
ventilation (n=27)

Mechanical supply and 
exhaust ventilation (n=62)

Air change rate [h-1] 

0

5

10

15

20

25

30

35

40

45

P
ro

ce
n

t 
o

f 
h

o
u

se
s 

[%
]

Air change rate [1/h]

Mechanical exhaust 
ventilation (n=5)

Mechanical supply and 
exhaust ventilation (n=65)

Air change rate [h-1] 



Annex 55 RAP-Retro  71 Subtask 1: Stochastic data 

 

Figure 3.29 Average and standard deviation of air change rates in timber-framed and heavy 

weight detached houses.  

3.3.4.2 Air tightness of timber-framed and heavy weight detached houses 

Air tightness data from 100 timber-framed, 50 stone and 20 log houses was analyzed. The air 

tightness measurements have been performed with fan pressurization method according to the 
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[1]. 

First the normality of the data was analysed. The distributions of air change rate [h-1] and air 

permeability [m3/(hm2)] for timber-framed, stone and log houses can be seen from Figure 3.30. 

Also the normal probability plots of the data sets have been plotted. Visually it seems that the 

data is close to normally distributed. 
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Figure 3.30 Distributions and normal probability plots of air change rate and air permeability. Air 

tightness tests for timber-framed, stone and log houses are presented. 

Average air tightness and standard deviations of different house types are shown in Figure 3.31. 

It can be seen that there is difference between houses that have been built with different types 

of structures. Timber-framed houses and log houses have the highest average air permeability 

values.  On the other hand, in every type of house there are also good air tightness values, which 

mean that good air tightness can be reached regardless of the choice of structure. 
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Figure 3.31 Air permeability q50 [m3/ (hm2)] of detached houses divided by different types of 

structures (stone-based, log and timber-framed houses). The mean values with standard 

deviations and the range of the results are shown. 

The influence of the age of the house on the air tightness is shown in Figure 3.32. There are no 

statistically significant signs which would suggest that the age of the house influences the air 

tightness of the house. It should be noted that the measurement sample contains results only 

from a certain time period. For example the emphasis on building air tightness has changed 

clearly both in building practice and in regulations in Finland in the past ten years. 

 

Figure 3.32 Influence of year of construction on air tightness of timber-framed houses (left) and 

heavy weight houses (right). 

The subgroups of timber-framed houses were studied more thoroughly. The average air 

tightness of timber-framed houses grouped by ventilation type and combination of insulation 

and air barrier can be seen in Figure 3.33. It seems that houses with mechanical ventilation have 

been built more air tight than houses with natural ventilation. Also houses with polyurethane 

insulation seem to have been built more air tight than houses with mineral wool & plastic film 

or cellulose insulation & paper sheet. 
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Figure 3.33 Air permeability of timber-framed houses at 50 Pa [m3/(hm2)] grouped by ventilation 

system (left) and by combinations of insulation and air barrier materials (right). The mean values 

with standard deviations and the range of the results are shown. 

Also the influence of the way of construction was investigated in Figure 3.34. It seems that 

houses constructed on site are less air tight than prefabricated houses or houses built with pre-

cut elements. The reason for houses constructed on site being less air tight, might be the need 

for manual labor and therefore the quality of workmanship. 

 

Figure 3.34 Air permeability of timber-framed houses at 50 Pa [m3/(hm2)] grouped by way of 

construction. The mean values with standard deviations and the range of the results are shown. 

Also the heavyweight detached houses were studied more thoroughly. The influence of the 

ceiling type was investigated because according to thermal imaging the joint between the ceiling 

and the outer wall is the most common place for air leakages. The results are shown in Table 

3.5. Although the sample size was small, the results suggest that when using a timber-framed 

ceiling the air change rate and air permeability of the house increases. 

 

 

 

 

3.6
1.8

4.1
2.2

5.3
2.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

62 houses 28 houses 10 houses

Mechanical supply 
and exhaust 
ventilation

Mechanical extract 
ventilation

Natural ventilation

A
ir 

pe
rm

ea
bi

lit
y 

at
 5

0 
P

a 
[m

3
/h

m
2
]

3.8
1.7

4.7
1.8

1.2
1.1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

52 houses 12 houses 6 houses

Mineral wool 
insulation& plastic 

film

Cellulose insulation 
& paper sheet

Polyurethane 
insulation

A
ir 

pe
rm

ea
bi

lit
y 

at
 5

0 
P

a 
[m

3
/h

m
2
]

4.5
2.2 3.2

1.5
3.5
2.5

3.4
1.5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

48 houses 28 houses 8 houses 14 houses

Constructed on 
site

Prefabricated 
house - large 

elements

Prefabricated 
house - small 

elements

Pre-cut 
elements/platform

A
ir 

pe
rm

ea
bi

lit
y 

at
 5

0 
P

a 
[m

3
/h

m
2
]



Annex 55 RAP-Retro  76 Subtask 1: Stochastic data 

Table 3.5 Air change rates [h-1] and air permeability [m3/hm2] of heavyweight houses divided by 

ceiling type. 

Type of house 

Houses with concrete or AAC ceiling Houses with timber-framed ceiling 

Amount of 

houses 

Average 

n50-value 

[h-1] 

Average 

q50-value 

[m3/hm2] 

Amount of 

houses 

Average 

n50-value 

[h-1] 

Average 

q50-value 

[m3/hm2] 

Autoclaved 

aerated 

concrete 

9 1.5 1.6 1 2.3 2.0 

Shuttering 

concrete block 
3 1.2 1.6 7 1.8 2.0 

Concrete 

element 
2 1.2 1.6 8 3.0 3.0 

Lightweight 

aggregate 

concrete 

1 1.9 2.4 9 3.3 3.8 

Total 15 1.5 1.8 25 2.6 2.7 

 

3.3.4.3 Air tightness of apartment buildings 

Air tightness measurements from 25 apartment buildings were investigated. The air tightness 

measurements have been performed for the whole buildings or at least for the whole stair case. 

When considering big buildings (multistory apartment building etc.) the air change rates and air 

permeability values differ from each other. The volume of the house increases faster compared 

to the area of the façade. For the 25 investigated apartment buildings the average n50-value was 

0.4 h-1 (st.dev. 0.2) and the average q50-value 1.1 m3/(hm2) (st.dev. 0.5). In Figure 3.35 is shown 

the distribution of air tightness measurements. 

Figure 3.35 Distribution and normal probability plot of air change rate [h-1] and air permeability 

at 50 Pa pressure difference in apartment buildings. 

The influence of the shape of the house was investigated by comparing the n50- and q50-values 

with the shape factor of the house (Figure 3.36).  
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The shape factor is calculated by: 

V

Afacade
       (3.1) 

where Afacade [m2] is the area of the facade and V [m3] the volume of the house.   

 

Figure 3.36 Effect of the shape factor (Afacade/V) on the air tightness of buildings (n50 [h-1] or q50 

[m3/ (hm2)]). 
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[1]. 

The principle is shown in Figure 3.37, Figure 3.38 shows an installed ventilator for a blower door 

test. 

 

Figure 3.37 Principle of a blower door test. 

 

Figure 3.38 Installed ventilator of blower 

door test (source: Wikipedia). 

The distribution of air change rates (n50) is shown in Figure 3.39 and cumulative distribution 

function in Figure 3.40. Most of the values are measured around 1.3 h-1while the mean of the 

data is 1.77 h-1 with a standard deviation of 1.22. More information can be found in Table 3.6. 

  

Figure 3.39 Distribution of air permeability at 

50 Pa 

 

Figure 3.40 Empirical Cumulative Distribution 

Function of air permeability at 50 Pa 

Table 3.6 Summary n50 data. 

Min. 1st Qu. Median Mean 3rd Qu.    Max. SD 

0.03 1.00 1.30 1.77 2.20 5.4 1.22 

n50 n50 
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It has also been investigated, if the n50 data follows the normal distribution. The results are 

shown in the normal probability plot of Figure 3.41.To verify this assumption a Shapiro Wilk test 

with has been performed. The results show a very high possibility that the data follows the 

normal distribution (probability of 3e-07 to reject the hypothesis of normal distribution). 

 

Figure 3.41 Normal probability plot for n50 values. 

3.3.5.2 Air tightness per building type 

Average air tightness and standard deviations of different house types are shown in Figure 3.42.  

 

Figure 3.42 Mean n50 values grouped by building type and their error bars (standard deviation). 

Differences in n50 values between the buildings types can be identified; however, the statistical 

significance of deviations has not been tested via anova. The lowest n50 measurements have 

been taken at single family and row houses, however, with a relative small sample size only 3 

single family houses being measured. 
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3.3.5.3 Air tightness correlations 

The following section analyses if there is a correlation between n50 values and other parameters 

of the building. 

At first the influence of the building volume and size of the enclosing external area have been 

investigated (Figure 3.43, Figure 3.44). The plots indicate that there seems to be no correlation 

between air tightness and the building volume or surrounding area. The values are rather wide 

spread and the linear correlation does not show any tendencies. This assumption is supported 

by Spearman’s correlation tests which suggest only a correlation of 0.05 for both the building 

volume and external area. 

 

 

Figure 3.43 Correlation between n50 and 

building volume. 

 

 

Figure 3.44 Correlation between n50 and 

building envelope area. 

In contrast, the number of occupants is likely to be linked to the air tightness, while the 

occupancy per m² treated floor area remains uncertain. At least a mathematical correlation can 

be found by using the Spearman correlation test which result in-0.53 for testing number of 

occupants and 0.14 for occupancy per floor area. The scatterplots including the regression lines 

are shown in Figure 3.45 and Figure 3.46. 
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Figure 3.45 Correlation between n50 and 

number of occupants. 

 

Figure 3.46 Correlation between n50 and 

treated floor area per occupant. 

Not unexpected comes the negative correlation between construction year and n50 

measurements (Figure 3.47). As building regulations are continuously getting stricter and 

improvements in building construction have been made over the years, the air leakage is steadily 

decreasing. 

 

Figure 3.47 Correlation between n50 and year of construction. 

3.3.6 Portugal [UP] – Airtightness in refurbished social housing of Porto 

3.3.6.1 Collected raw data 

The air permeability measurements were carried out using the Retrotec1000 blower door 

model. The standard   
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[1] was applied in the tests, following method A described in the standard. In each dwelling, 

both pressurization and depressurization tests were performed. The in situ measurements were 

done in four days of two consecutive weeks during spring, with average temperature ranging 

from 13.5 °C to 21.0 °C . The wind velocity during tests varied between 1.2 m/s and 2.4 m/s. The 

values obtained in the tests of pressurization and depressurization were averaged and are 

presented in Figure 3.48. The dwellings without modifications are shaded in the graph. 

 

Figure 3.48 Measured n50 values (shaded results correspond to non-modified dwellings). 

3.3.6.2 ANALYSIS AND STOCHASTIC DATA 

The cumulative distribution of the measured data is presented in Figure 3.49. 

 

Figure 3.49 CDF of Measured n50 values. 
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users said the windows were opened was divided by the number of days the survey took place 

in each dwelling resulting in the NWO parameter, expressed in hours/day. The correlation 

between that parameter and airtightness is presented in Figure 3.50. It shows a tendency of 

decreasing hours of opened windows with the increase of n50 especially if the number of users 

per dwelling is included in the analysis. This observation confirms that, turning the dwellings 

more airtight without a working ventilation system compels the users to increase ventilation by 

opening windows. Of course that this is more a trend than an actual correlation as user 

behaviour is complex and cannot be assessed in a too simplified way. 

 

Figure 3.50  n50 vs. NWO. 

3.3.7 Sweden [SP] – Airtightness in refurbished Swedish buildings 

The detailed data for 15 measured apartments is presented in the Digital Appendix. Figure 3.51 

presents the overall results. 

 

 

Figure 3.51 Measured air-tightness of 15 apartments. 
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3.3.8 United Kingdom [UCL] – Airtightness in the Warm Front study 

3.3.8.1 Collected raw data 

A total of 221 (40 pre- intervention, 113 post-intervention, and 30 both pre- and post- 

intervention) sets of data were collected from a subsample of dwellings with physical dwelling 

characteristics given in  

Table 3.7. The sample dwellings were principally terraced and constructed between 1900-1950. 

The walls are most likely to be cavity masonry with most of the remaining dwellings having solid 

brick walls. 

Table 3.7 Dwelling characteristics of sample in which air infiltration rate measurements were 

taken. 

Age Wall type Building type 

Pre 1900 15 % Cavity masonry 66 % Terraced 57 % 

1900-1950 50 % Solid brick 33 % Semi-detached 33 % 

1951-1976 32 % Timber framed 0.5 % Flats 9 % 

Post 1976 3 % Other 0.5 % Detached 1 % 

 

A fan pressurization test was used to measure the whole dwelling air flow rate due to infiltration 

at a pressure differential of 50Pa. All open flues and vents were kept open during the test in 

order to measure infiltration under normal operating conditions. 

3.3.8.2 Analysis 

3.3.8.2.1 Post-processing of raw data 

To compare different buildings, the air flow rate at the pressure differential of 50Pa was divided 

by the building envelope area to obtain the permeability (m3/hr/m2). Measurements for 

dwellings tested twice with no intervention in between replaced with the mean permeability of 

both tests. 

3.3.8.2.2 Statistical summary 

Table 3.8 Summary statistics for distribution of permeabilities in pre- and post-intervention 

samples. 

 Pre-Warm Front Post-Warm Front 

Number of dwellings 60 127 

Mean permeability (m3/hr/m2) 17.7 16.7 

Median permeability (m3/hr/m2) 16.6 15.8 

Standard deviation permeability (m3/hr/m2) 7.0 7.2 

 



Annex 55 RAP-Retro  85 Subtask 1: Stochastic data 

Carrying out a two-sample Kolmogorov-Smirnov test on the pre- and post- intervention 

permeabilities (Table 3.8) finds the null hypothesis that the two distributions are drawn from 

the original parent distribution cannot be rejected at the 5 % significance level. 

3.3.8.3 Stochastic data sets 

 

Figure 3.52 Distribution of permeabilities for dwellings pre- Warm Front intervention and post- 

Warm Front intervention. 

Figure 3.52 shows the distribution of permeabilities for the pre- and post- intervention samples 

that can be used in stochastic analyses. 
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3.4 Indoor loads 

3.4.1 Canada input: Indoor Temperature and Humidity Distributions in 22 

Rooms of a Multi-Unit Residential Building [BCIT] 

Brief description of the project is presented in section 2.3, where the indoor temperature and 

excess humidity distributions of the 22 rooms during the winter and summer periods are 

presented. Excess humidity is defined as the difference between the indoor and outdoor 

absolute humidities, quantities that are derived from the simultaneously measured temperature 

and relative humidity of the indoor and outdoor locations. In this study, the winter and summer 

periods are defined from December to February and from June to August, respectively.  

3.4.1.1 Measurement methods 

To assess the level of variations in temperature and humidity among the rooms in the same 

Suite, temperature and relative humidity data loggers (HOBO Onset U12-011 and Onset U12-

013) are placed in each bedroom, kitchen, bathroom and living room of each suite. In addition, 

two data loggers are installed in the north and east corridors, one each, to simultaneously 

capture the corridor air temperature and relative humidity conditions. The HOBOs’ log data 

every two minutes, and the data is downloaded on a computer once a month. To correlate the 

indoor and outdoor climatic conditions, the local outdoor air temperature and relative humidity 

are measured every minute and downloaded to a computer once a month. The weather sensors 

are bought for the project and assumed to be within the manufacturer’s calibration range. The 

indoor temperature and humidity data loggers (HOBOs) are calibrated in-house using a climatic 

chamber. Figure 3.53 shows the temperature and relative humidity readings of the data loggers 

at the three reference environments: 35 %, 52 % and 70 % relative humidity and 21oC. As shown 

in the figure, the HOBOs readings at all three settings are consistent. The relative humidity 

difference between the maximum and the minimum readings at given set points are under 

2.5 %.  Thus in general, the accuracies of the data loggers are within the range of the 

manufacturer specifications (2.5 %).  
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Figure 3.53 Relative humidity readings of HOBO data loggers during the calibration process. 

3.4.1.2 Indoor temperature distributions within Suites 

3.4.1.2.1 Winter period 

The average winter temperatures of the 22 rooms are shown in Figure 3.54 (a). During the winter 

period, the seasonal average temperature of the rooms in Suite ‘A’ can vary from 17.9 °C (in the 

Living Room) to 20.7 °C (in the Master Bedroom), which results in a maximum seasonal average 

temperature difference of 2.8 oC. The average temperature in the Kitchen, Bathroom and 

Bedroom-2 are about the same (19.5 °C). Temperature variation within the rooms is relatively 

higher in the Living Room followed by the occupied bedrooms as shown in the standard 

deviation plots in Figure 3.55. The Living Room temperature has a standard deviation of 1.7 °C, 

and is between 14.5 °C and 21.3 oC for 95 % of the winter period. In comparison, the Bathroom 

and the Kitchen have a relatively narrower temperature variation (standard deviation of 0.8 °C). 

The seasonal average temperatures of the rooms in Suite ‘B’ vary from 16.8oC (in the Bedroom-

2) to 17.8 oC (in the Bathroom). Not only the seasonal average temperatures of the rooms are 

about the same (difference between rooms less than 1 oC), but also the magnitude of 

temperature variations within the rooms are similar. The standard deviations of the 

temperature variation in the Suite vary from 0.8 oC (in the Master Bedroom) to 1.2 oC (in the 

Living room and Bathroom), Figure 3.55. In Suite ‘C’, the Bathroom has the highest seasonal 

average temperature (23.6 oC), followed by the Living Room (21.5 oC). The Bedrooms have 

similar seasonal average temperatures (20.0 oC), which is about 3.6 oC less than the Bathroom 

temperature. The temperature variations within the rooms seem to be low as the standard 
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deviation values (0.7 oC to 1.0 oC) are indicated in Figure 3.55.  Similar to Suite ‘C’, the Bathroom 

and the Living Room in Suite ‘D’ have high seasonal average temperatures, 22.5 °C and 21 oC, 

respectively. In comparison to the other rooms, the Kitchen has the lowest seasonal average 

temperature (18.9 oC) and relatively high temperature variation (standard deviation of 1.2 oC). 

In general, the Bathrooms in Suite ‘C’ and ‘D’ have relatively high temperatures, and the 

temperature difference between the rooms excluding the bathrooms are within 1.0 oC to 2.0 oC.  

3.4.1.2.2 Summer period 

Figure 3.54 (b) and Figure 3.55 show the average summer temperature in different rooms of the 

four Suites as well as the corresponding standard deviations, respectively. The seasonal average 

temperature in Suite ‘A’ varies from 25.0oC in the Bathroom to 23.4oC in the Bedroom-3, and 

around 24oC in the other four rooms. Thus, the maximum seasonal variation between the rooms 

in Suite ‘A’ is in the range of 1.0 to 1.5oC. The temperature fluctuations within the rooms are 

relatively high in the summer when compared to that of the winter period as shown in the 

standard deviation plots in Figure 3.55. In general, the rooms have about the same temperature 

fluctuation (standard deviation of 1.8oC) in the summer period, while slightly different 

temperature fluctuations in different rooms are observed during the winter period (standard 

deviation of 0.8 to 1.6oC). The rooms in Suite ‘B’ have about the same seasonal average 

temperatures (24oC) except the Bathroom room, which has 1oC more than the other rooms. In 

this Suite, the temperature fluctuations within the rooms are nearly the same and have standard 

deviation about 1oC, Figure 3.55. The rooms in Suite ‘C’ have relatively higher seasonal average 

temperature compared to the other Suites, Figure 3.54. The temperature differences between 

the rooms except the Bathroom are less than 0.7oC. The seasonal average temperature in the 

Bathroom is 29.8oC, which is about 3.5oC more than the other rooms. The temperature 

fluctuations within the rooms are about the same (standard deviation of 2oC). As in Suite ‘A’, the 

temperature fluctuations within the rooms are relatively high during the summer period when 

compared to that of the temperature fluctuation during the winter period (in the cases of Suite 

‘C’ about two times). The seasonal average temperatures of the rooms in Suite ‘D’ are nearly the 

same (24.9oC to 25.5oC), which a variation of below 0.6oC. Inconsistent with the observation 

made in Suite ‘A’ and Suite ‘C’ the temperature variation within the rooms in Suite D during the 

summer period are relatively high (standard deviation between 2.2 to 2.5oC standard deviation).  
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Figure 3.54  Average temperatures of the rooms during the Winter (a) and Summer (b) periods. 

a) Winter 

b) Summer 
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Figure 3.55 Standard deviation of temperature variations in the rooms during the Winter and 

Summer periods. 

3.4.1.3 Excess humidity distribution within Suites 

3.4.1.3.1 Winter period 

The seasonal average excess humidity in the Living rooms, Kitchens, Bathrooms and Bedrooms 

of the four Suites are presented Figure 3.56. As can be seen in the figure, the excess humidity in 

Suite ‘A’ varies from 2.5 g/m3 in the Bedroom-3, which is used as storage, to 4.5 g/m3 in the 

Master Bedroom. The Living room and Bathroom have excess humidity of 2.7 g/m3 and 2.9 g/m3, 

respectively. The excess humidity fluctuation in the Master Bedroom is significantly high 

(standard deviation of 1.5 g/m3) compared to the other rooms, which varies between 0.8 to 1.0 

g/m3, Figure 3.58. The relatively high excess moisture variations between rooms in Suite A is due 

to the change in occupant habits (occupants occasionally use a portable humidifier during the 

winter period). In Suite ‘B’ the seasonal average excess humidities in the rooms are nearly the 

same (4.5 g/m3), Figure 3.56. Similarly, as shown in Figure 3.58, the excess humidity fluctuations 

within the rooms are about the same (1.2 g/m3). A similar situation is observed in Suite ‘C’, where 

the excess humidity in the rooms have about the same seasonal average values (4.3 to 4.8 g/m3) 

and fluctuations (standard deviations 1.0 to 1.2 g/m3). Based on the average and standard 

deviation values presented here, the excess humidity in Suite ‘B’ and ‘C’ can be assumed to be 

distributed uniformly within the respective Suites. As can be seen in Figure 3.56, the excess 

humidity in Suite ’D’ is significantly high in the Kitchen (3.1 g/m3) when compared to the other 

rooms, which have seasonal average of 2.3 to 2.5 g/m3. The excess humidity fluctuations in all 

the rooms except the Kitchen are about the same (standard deviation of 0.8 g/m3), while the 

Kitchen has a standard deviation of 1.6g/m3. Thus, the excess humidity distributions in all the 

rooms of Suite D except the kitchen can be represented with the same excess humidity 

distribution parameters.  
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3.4.1.3.2 Summer period 

The seasonal average excess humidities of the 22 rooms and the standard deviations that 

indicate the excess humidity fluctuations within the rooms are presented in Figure 3.57  and 

Figure 3.58, respectively. As shown in the Figure 3.44, the Master Bedroom and the Kitchen have 

slightly higher excess moisture (2.3 and 2.5 g/m3, respectively) compared to the other rooms, 

which have about 1.6 g/m3. The excess humidity fluctuations within the rooms, however, are 

comparable and are within 0.75 to 1.0 g/m3 standard deviation. The excess humidity in Suite ‘B’ 

seems to be uniform across the various rooms (seasonal average value of 3.5 g/m3). The 

difference between the rooms’ average excess humidity values are less than 0.5 g/m3. 

Moreover, the excess humidity fluctuations within the rooms are similar and all have about 1.0 

g/m3 standard deviation. In Suite ‘C’, the bedrooms have slightly higher excess humidity (3.0 to 

3.5 g/m3) when compared to the Living room (2.6 g/m3). The standard deviation of the excess 

humidity fluctuation within the Kitchen is 1.2 g/m3 while the other rooms have about the same 

standard deviations (1.0g/m3). The excess humidity in Suite ‘D’ is low compared to the other 

Suites. The average excess humidities in all the rooms except in the Kitchen are between 1.3 to 

1.6 g/m3, while the Kitchen has 3.0 g/m3. Although some difference between the rooms are 

expected, the excess humidity deviation between the Kitchen and the other rooms are quite 

significant, which suggests that the HOBO in the ‘Kitchen’ must have been defective. Similarly, 

the excess humidity fluctuations within the rooms are quite the same, except in the Kitchen. 

They have a standard deviation of 0.8 g/m3 while the Kitchen’s is 2.8 g/m3. 

Figure 3.56 Average excess humidity of the rooms during the Winter period. 
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Figure 3.57 Average excess humidity of the rooms during the Summer period. 

Figure 3.58 Standard deviation of excess humidity variations in the rooms during the Winter and 

Summer periods. 

3.4.1.4 Suites’ average temperature and excess humidity 

The temperature and excess moisture distributions in various rooms of the four Suites are 

presented in the previous sections. Here, the average temperature and excess moisture 

distributions of the suites are presented. The measurements in the bathrooms and kitchens are 

excluded from the set of data used for averaging since the temperature readings in the 

bathrooms and the calculated excess moisture values in the kitchens tend to deviate significantly 

from the other rooms’ data. The Suites’ average temperature distributions during the winter 

and summer periods are presented in Figure 3.59.  
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During the winter period, the average indoor temperature of the Suites varies from 17oC in Suite 

‘B’ to 20.4oC in Suite ‘C’, while Suites ‘A’ and ‘D’ have an average temperature of 19oC and 20.2oC, 

respectively. In general, Suite ‘B’ is relatively cold and has high temperature fluctuation 

(standard deviation of 1.8oC). Suites ‘C’ and ‘D’ are relatively warm and the former has slightly 

lower temperature fluctuation (standard deviation of 0.9oC). 

The Suites average temperatures during the summer varies from 24oC in Suite ‘A’ to 26.6oC in 

Suite ’C’. Suite ‘B’ and Suite ‘D’ have an average temperature of 24.5oC and 25.2oC, respectively. 

As can be seen in  

Figure 3.46 (b), the temperature distribution curve in Suite ‘B’ is narrow (lowest standard 

deviation value 1.0oC) while the other Suites have wider distributions (standard deviation 

between 1.8oC in Suite ‘A’ to 2.3oC in Suite ‘D’). Thus, Suite ‘C’ can be characterized as a Suite 

with high summer indoor temperature and fluctuations. 

Figure 3.60 shows the average excess moisture distributions in the four suites. In general, the 

excess moisture distributions in the suites can be classified as low, medium and high during the 

winter period, Suite ‘D’, Suite ‘A’ and Suites ‘B’ and ‘C’, respectively. The corresponding seasonal 

average values are 2.3 g/m3, 3.2 g/m3, and 4.3 g/m3 and 4.5 g/m3, respectively. Of the four Suites, 

Suite ‘A’ has a high fluctuation of excess humidity (standard deviation value of 3.8 g/m3) when 

compared to the other Suites’, which are in the range of 0.8 to 1.2 g/m3. The significantly high 

fluctuation in Suite ‘A’ is caused by the occupants’ use of portable humidifier during the winter 

period.  

As can be seen in Figure 3.60, the excess humidity in the Suites during the summer period can 

be classified as low (Suite ‘A’ and ‘D’) and high (Suite ‘B’ and ‘C’). The average excess humidity 

in Suite ‘A’, ‘B’, ‘C’ and ‘D’ are 1.8 g/m3, 3.4 g/m3, 3.2 g/m3 and 1.5 g/m3, respectively. Regardless 

of the high and low excess humidity grouping, the excess humidity fluctuations in all of the Suites 

are similar (standard deviations between 0.8 to 1.0oC). Based on the temperature and excess 

moisture distribution curves, Suite ‘C’s indoor conditions may represent the worst case scenario 

where the indoor temperature is low and the excess moisture is high—a combination that may 

result in durability issues and an increased mold growth risk.  
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Figure 3.59 Suites average indoor temperature distributions during Winter (a) and Summer (b) 

period. 
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Figure 3.60 Suites’ average indoor excess humidity distributions during Winter (a) and Summer 

(b) periods. 

3.4.1.5 Summary 

In general during the winter period, the indoor temperature distribution curves are narrower 

(lower standard deviation) and have slightly different mean values, which imply that 

temperature variations within the rooms are relatively low, but the temperature differences 

between rooms are relatively higher. During the summer period, the temperature distribution 

curves are wider (higher standard deviation values) and have similar mean values, which means 

during the summer period the temperature variation within a room can be high but the 

temperature difference between rooms are low. These seasonal temperature distributions are 

related to the levels of air movement in the two seasons. Higher natural ventilation in the 

summer period results higher air circulation and more uniform temperature distribution across 

the Suites, and the low natural ventilation and thermostat control during the winter results less 
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indoor air mixing and room temperature variations. During both winter and summer periods, 

the excess humidity differences between the rooms, excluding the Kitchens, are in the range of 

0.2 g/m3 to 1.0 g/m3. Whereas the excess humidity fluctuations within the rooms are fairly the 

same and have standard deviation values between 0.8 g/m3 and 1.0 g/m3.  

Based on the Suites considered in this study, the winter indoor temperature of a typical Suite 

can be characterized by a normal distribution using a mean temperature value between 17oC to 

21oC and a standard deviation of 1oC. Similarly, the summer indoor temperature of the suite can 

be characterized using a mean value between 24oC to 27oC and standard deviation of 2oC. In a 

similar fashion, the excess humidity profile of a typical Suite can be defined using a mean excess 

humidity value selected between 2.5 to 4.5 g/m3 for the winter period and 2.0 to 4.0 g/m3 for 

the summer period and a standard deviation value of 0.1 g/m3 for both winter and summer 

periods. Such approximation may not be valid for Suites with portable heater or humidifier. 

These mean and standard deviation values may be used to define different operating scenarios 

of different Suites representing low to high occupancy and cold to warm indoor temperature 

ranges in stochastic hygrothermal performance analysis.  

3.4.2 Denmark input 

The reporting of the data includes a description of the method used for collecting the data along 

with a description of the subsequent data handling. The report also includes simple graphs 

depicting correlations between proxies for occupant behaviour (temperature, relative humidity, 

CO2 concentration) and ambient environment. Of main interest to the Annex will be the data on 

indoor environments and their statistical deviations. 

3.4.2.1 Method 

The method section is an excerpt from [67]. The excerpt has been edited lightly to conform to 

the purposes of Annex 55. 

The concentration of carbon dioxide was continuously measured over a minimum of 2 days and 

2 nights (averaging about 60 hours) in the bedrooms of the children. Eighty measuring units, 

each comprising a carbon dioxide monitor and a data logger, were used in the study. 

CARBOCAP® CO2 monitors (GMW22, Vaisala, Finland) were used to measure the CO2 

concentration. The silicon-based Single-Beam, Dual-Wavelength NDIR sensors had a 

measurement range of 0-5000 ppm, an accuracy of (± 2 % of range + 2.0 % of reading) and a 

response time of 1 min. A HOBO U12-012 data logger (Onset Computer Corp., USA) was 

connected to each CO2 monitor to record the measured value. The logger also recorded the air 

temperature and relative humidity in the room with an accuracy of (± 0.35 °C from 0 to 50°C and 

±2.5 % from 10 % to 90 % RH). The measuring interval was 5 min. Prior to the experiment, 

readings of CO2 concentrations were compared with the CO2 concentrations measured with a 

factory calibrated Innova 1312 photo-acoustic multi-gas monitor (Luma-Sense Technologies A/S, 

Ballerup, Denmark) at various CO2 concentrations and a correction curve was generated for each 

unit. The CO2 concentrations recorded by a given unit were then corrected using the respective 

correction curve before further data processing. 
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One unit was used in each bedroom. The unit was placed at a location that would ensure 

minimum direct influence of sleeping occupants and windows on the measured data. Potential 

“dead” zones such as the space between furniture and room corners were avoided. One 

measuring unit was continuously operating outdoors in the yard of the research team’s base, 

located 3 km from the city centre of Odense, Denmark. 

3.4.2.2 Collected raw data 

The IECH study has supplied Annex 55 with measurements of indoor and outdoor temperatures, 

relative humidities and CO2 concentrations. 

3.4.2.2.1 Temperatures 

The measurements were performed between 10 March and 18 May 2008. The distribution of 

indoor temperatures can be described by the normal distribution. 

Table 3.9 Temperatures measured in 500 family homes in Denmark in spring 2008. 

Temperatures [°C] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 11.4 21.0 13.2 25.2 

Median 10.8 21.0 13.6 24.0 

Standard Deviation  2.0 5.4 4.8 

Confidence Interval95  ±0.2 ±0.5 ±0.4 

Maximum  26.4 24.8 52.6 

Minimum  12.2 -3.4 18.2 

 

Table 3.10 Temperatures measured in 440 single-family homes in Denmark in spring 2008. 

Temperatures [°C] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 11.4 20.9 12.7 25.4 

Median 10.8 20.9 13.1 24.0 

Standard Deviation  2.0 5.4 5.1 

Confidence Interval95  ±0.2 ±0.5 ±0.5 

Maximum  26.4 24.8 52.6 

Minimum  12.2 -3.4 18.2 

 

Table 3.11 Temperatures measured in 60 multi-family homes in Denmark in spring 2008. 

Temperatures [°C] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 11.4 21.3 17.1 24.2 

Median 10.8 21.4 18.4 23.7 

Standard Deviation  1.9 4.3 2.7 

Confidence Interval95  ±0.5 ±1.1 ±0.7 

Maximum  26.4 23.1 35.1 

Minimum  16.3 2.0 18.8 

 



Annex 55 RAP-Retro  98 Subtask 1: Stochastic data 

The outdoor temperatures are for the entire period between 10 March and 18 May 2008. The 

indoor averages are the average temperatures measured in the children’s bedrooms during the 

few days the measurement equipment was positioned in their bedrooms. The minimum values 

are the single lowest value measured in the child’s bedroom. The maximum values are the single 

highest value measured in a child’s bedroom. 

Standard deviations are calculated using theory applicable for samples. The confidence intervals 

are calculated using the theory valid for the Normal Distribution for a α-value of 0.05; this gives 

95 % confidence intervals. 

Table 3.12 Outdoor temperature distribution in % in measured period. 

Temperatures [°C] Distribution [%] 

>30 0.4 

30>X≥ 25 4.6 

25>X≥20 10.0 

20>X≥15 13.7 

15>X≥10 25.6 

10>X≥5 26.0 

5>X≥0 15.2 

0>X≥-5 4.4 

-5> 0.2 

 
The following graphs (Figure 3.61,Figure 3.62 andFigure 3.63) display the data collected on 

indoor temperatures in Danish homes along with probability functions and probability density 

functions (PDF). The probability functions are calculated as the frequency of a measurement 

occurring in a bin (temperature interval) divided by the total amount of bins. The displayed 

probability density functions have been drawn from their respective means and standard 

deviations and the calculated probability of occurrences in the individual bins. 

Figure 3.61 Distribution and PDF of indoor 

temperatures in Danish single-family homes. 

Figure 3.62 Distribution and PDF of indoor 

temperatures in Danish multi-family homes. 
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Figure 3.63 Distribution and PDF of indoor temperatures in general Danish family homes. 

 
3.4.2.2.2 Relative humidities 

The measurements were performed between 10 March and 18 May 2008. The distribution of 

indoor relative humidities can be described by the normal distribution. 

 

Table 3.13 Relative humidities measured in 500 family homes in Denmark in spring 2008. 

Relative humidities [%] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 62.0 41.4 31.0 50.8 

Median 65.0 41.2 30.9 50.1 

Standard Deviation  5.5 5.3 7.4 

Confidence Interval95  ±0.5 ±0.5 ±0.6 

Maximum  58.1 44.3 93.2 

Minimum  27.4 10.8 32.2 

 

Table 3.14 Relative humidities measured in 440 single-family homes in Denmark in spring 2008. 

Relative humidities [%] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 62.0 41.4 31.1 50.9 

Median 65.0 41.3 31.0 50.1 

Standard Deviation  5.4 5.3 7.4 

Confidence Interval95  ±0.5 ±0.5 ±0.7 

Maximum  58.1 44.3 93.2 

Minimum  27.4 10.8 32.2 

 

Table 3.15 Relative humidities measured in 60 multi-family homes in Denmark in spring 2008. 

Relative humidities [%] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 62.0 41.1 30.3 50.0 

Median 65.0 40.4 29.1 50.0 

Standard Deviation  6.0 4.9 7.0 

Confidence Interval95  ±1.6 ±1.3 ±1.8 

Maximum  55.0 42.3 69.9 

Minimum  30.8 18.9 36.2 
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The outdoor relative humidities are for the entire period between 10 March and 18 May 2008. 

The indoor averages are the average relative humidities measured in the children’s bedrooms 

during the few days the measurement equipment was positioned in their bedrooms. The 

minimum values are the single lowest value measured in the child’s bedroom. The maximum 

values are the single highest value measured in a child’s bedroom. 

Standard deviations are calculated using theory applicable for samples. The confidence intervals 

are calculated using the theory valid for the Normal Distribution for an α-value of 0.05; this gives 

95 % confidence intervals. 

Table 3.16 Outdoor relative humidity distribution in % in measured period. 

Relative humidities [%] Distribution [%] 

> 95 2.6 

95 > X ≥ 85 11.0 

85 > X ≥ 75 20.3 

75 > X ≥ 65 18.8 

65 > X ≥ 55 12.6 

55 > X ≥ 45 12.4 

45 > X ≥ 35 16.4 

35 > X ≥ 25 7.4 

< 25 1.2 

 

The following graphs (Figure 3.64,Figure 3.65 andFigure 3.66) display the data collected on 

indoor relative humidities in Danish homes along with probability functions and probability 

density functions (PDF). The probability functions are calculated as the frequency of a 

measurement occurring in a bin (relative humidity interval) divided by the total amount of bins. 

The displayed probability density functions have been drawn from their respective means and 

standard deviations and the calculated probability of occurrences in the individual bins. 

Figure 3.64 Distribution and PDF of indoor 

relative humidities in Danish single-family 

homes. 

Figure 3.65 Distribution and PDF of indoor 

relative humidities in Danish multi-family 

homes. 
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Figure 3.66 Distribution and PDF of indoor relative humidites in general Danish family homes. 

 
3.4.2.2.3 Moisture excesses 

The moisture excess (occupant generated moisture production) is calculated from the 

measurements of indoor and outdoor relative humidity levels and temperatures: 

Δ� � ����∙��,�������∙����  ! 
��∙���"#$%.�'°)�∙°*+

, ��-∙��,�����-�∙����  ! 
��∙���"#$%.�'°)�∙°*+

.    (3.2) 

where Δ symbolizes a change , 

 � is the moisture excess 
/ 0%1  

 23 is the relative humidity % 

 ��,��	 is the saturated vapour pressure 56 

 
 is the temperature in Celsius °7 

 8 is the unit for temperature in Kelvin 8 

 2� is the specific gas constant for water vapour 461.5 =
>/ ∙ 8 

 Subscript ? is for the interior environment (indoor) , 

 Subscript @ is for the exterior environment (outdoor) , 
 

The measurements were performed between 10 March and 18 May 2008. The distribution of 

moisture excesses can be described by the normal distribution. 

Table 3.17 Moisture excesses calculated for family homes in Denmark in spring 2008. 

Moisture excess [g/m3] All homes (480) Single-family (422) Multi-family (58) 

Average 1.6 1.5 1.8 

Median 1.5 1.5 1.7 

Standard Deviation 1.1 1.1 1.2 

Confidence Interval95 ±0.1 ±0.1 ±0.3 

Maximum 5.2 5.2 4.8 

Minimum -1.2 -1.2 -0.2 
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Standard deviations are calculated using theory applicable for samples. The confidence intervals 

are calculated using the theory valid for the Normal Distribution for a α-value of 0.05; this gives 

95 % confidence intervals. 

The homes included in the calculations of the moisture excesses are 20 less (18 single-family and 

2 multi-family homes) than the overall total of homes included in the study. This is due to a lack 

of weather data for the first few days of the study. 

The following graphs (Figure 3.67, Figure 3.68 andFigure 3.69) display the data collected on 

moisture excesses in Danish homes along with probability functions and probability density 

functions (PDF). The probability functions are calculated as the frequency of a measurement 

occurring in a bin (moisture excess interval) divided by the total amount of bins. The displayed 

probability density functions have been drawn from their respective means and standard 

deviations and the calculated probability of occurrences in the individual bins. In the instances 

where the amounts of bins are low, there can be some inconsistency between the drawn PDF 

and the actual PDF; this is due to rounding errors in the process of drawing the graphs and not 

related to the collected data. An example of this can be seen on Figure 3.68. 

Figure 3.67 Distribution and PDF of indoor 

moisture excesses in Danish single-family 

homes. 

Figure 3.68 Distribution and PDF of indoor 

moisture excesses in Danish multi-family 

homes. 

 

Figure 3.69 Distribution and PDF of indoor moisture excesses in general Danish family homes. 
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3.4.2.2.4 CO2 concentrations 

The measurements were performed between 10 March and 18 May 2008. The distribution of 

indoor CO2 concentrations can be described by the log-normal distribution. 

Table 3.18 CO2 concentration levels measured in 500 family homes in Denmark in spring 2008. 

CO2 concentration [ppm] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 403 978 472 1865 

Median 392 943 469 1757 

Standard Deviation  270 55 664 

Confidence Interval95  955 467 1807 

  1002 477 1924 

Maximum  2225 831 4675 

Minimum  481 370 687 

 

Table 3.19 CO2 concentration levels measured in 440 single-family homes in Denmark in spring 

2008. 

CO2 concentration [ppm] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 403 962 474 1815 

Median 392 928 471 1717 

Standard Deviation  262 57 622 

Confidence Interval95  938 469 1758 

  987 479 1874 

Maximum  2225 831 4474 

Minimum  481 383 687 

 

Table 3.20 CO2 concentration levels measured in 60 multi-family homes in Denmark in spring 

2008. 

CO2 concentration [ppm] Outdoor Indoor Average  Indoor Minimum Indoor Maximum 

Average 403 1098 456 2237 

Median 392 1058 454 2073 

Standard Deviation  304 42 907 

Confidence Interval95  1022 445 2015 

  1179 467 2484 

Maximum  2020 589 4675 

Minimum  594 370 991 

 

The outdoor CO2 concentration levels are for the entire period between 10 March and 18 May 

2008. The indoor averages are the average CO2 concentration levels measured in the children’s 
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bedrooms during the few days the measurement equipment was positioned in their bedrooms. 

The minimum values are the single lowest value measured in the child’s bedroom. The maximum 

values are the single highest value measured in a child’s bedroom. 

Standard deviations are calculated using theory applicable for samples and log-normal 

distributions. The confidence intervals are calculated using modified version of the Cox method 

[70] using the Student’s t variate, instead of the standard normal z variate, for a α-value of 0.05; 

this gives 95 % confidence intervals. 

Table 3.21 Outdoor CO2 concentration levels distribution in % in measured period. 

CO2 concentration [ppm] Distribution [%] 

> 550 0.7 

550 > X ≥ 525 0.8 

525 > X ≥ 500 2.1 

500 > X ≥ 475 3.5 

475 > X ≥ 450 6.8 

450 > X ≥ 425 0.0 

425 > X ≥ 400 18.0 

400 > X ≥ 375 47.4 

375 > X ≥ 350 18.4 

350 > X ≥ 325 2.5 

< 325 0.0 

 
The following graphs (Figure 3.70,Figure 3.71 andFigure 3.72) display the data collected on 

indoor CO2 concentration levels in Danish homes along with probability functions and 

probability density functions (PDF). The probability functions are calculated as the frequency of 

a measurement occurring in a bin (CO2 concentration interval) divided by the total amount of 

bins. The displayed probability density functions have been drawn from their respective means 

and standard deviations and the calculated probability of occurrences in the individual bins. 

Figure 3.70 Distribution and PDF of indoor 

CO2 concentration levels in Danish single-

family homes. 

Figure 3.71 Distribution and PDF of indoor 

CO2 concentration levels in Danish multi-

family homes. 
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Figure 3.72 Distribution and PDF of indoor CO2 concentration levels in general Danish family 

homes 

3.4.2.3 Analysis 

3.4.2.3.1 Temperatures 

Figure 3.73 and Figure 3.74 show how outdoor temperatures influence indoor temperatures in 

Danish homes. The indoor temperatures can be seen to be rising with the outdoor 

temperatures. Common Danish homes are equipped with heating systems which can maintain 

comfortable temperatures during the heating season. It is uncommon for homes to have 

mechanical cooling systems and most cooling will be done by opening windows. The Temperate 

Danish climate allows for this kind of cooling and venting. Danish family homes will usually try 

to maintain indoor temperatures around 21-23 °C. 

Figure 3.73 Correlation between indoor and 

outdoor temperatures in single-family homes. 

Figure 3.74 Correlation between indoor and 

outdoor temperatures in multi-family homes. 

The homes included in the above graphical representations of the dependence of indoor 

temperature on outdoor temperature are 20 less (18 single-family and 2 multi-family homes) 

than the overall total of homes included in the study. This is due to a lack of weather data for 

the first few days of the study. 

3.4.2.3.2 Relative humidities 

Figure 3.75 and Figure 3.76 show how outdoor temperatures influence relative humidity in 

Danish homes. For the measured period, the average indoor relative humidity is 40 %. The 
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relative humidity level is stable over the temperature variations in the measured period. Higher 

temperatures and stable relative humidity levels mean that the homes have higher levels of 

absolute humidity. It is unlikely that the families that participated in the research project 

changed their daily routines significantly over the measured period. For this reason, it can be 

assumed that the moisture added to the indoor environment comes from the outside. This also 

fits with the assumption that with higher temperatures more venting (opening of windows) will 

be done. The section on moisture excess supports this analysis. 

The measured period is relatively cool compared to the Danish summer. In summer the indoor 

relative humidities can be in the 60’s. In cold winters relative humidities can drop down into the 

20’s. The Danish climate is quite humid and the yearly average is around 80 %. 

Figure 3.75 Correlation between indoor 

relative humidity and outdoor temperatures 

in single-family homes. 

Figure 3.76 Correlation between indoor 

relative humidity and outdoor temperatures 

in multi-family homes. 

The homes included in the above graphical representations of the dependence of indoor relative 

humidity on outdoor temperature are 20 less (18 single-family and 2 multi-family homes) than 

the overall total of homes included in the study. This is due to a lack of weather data for the first 

few days of the study. 

Figure 3.77 and Figure 3.78 show how outdoor temperatures influence indoor moisture excess 

(moisture production) in Danish homes. Moisture excess levels can be seen to be falling with 

rising outdoor temperatures. In Denmark it is uncommon to have mechanical ventilation 

systems in homes. For this reason it is expected that families will open windows more during 

periods with higher temperatures. Venting a home without changing other occupant behaviour 

significantly will result in indoor absolute humidity levels closer to outdoor levels. The same 

reasoning also explains the falling moisture excess levels. 
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Figure 3.77 Correlation between moisture 

excess (moisture production) and outdoor 

temperatures in single-family homes. 

Figure 3.78 Correlation between moisture 

excess (moisture production) and outdoor 

temperatures in multi-family homes. 

The homes included in the above graphical representations of the dependence of indoor 

moisture excess levels on outdoor temperature are 20 less (18 single-family and 2 multi-family 

homes) than the overall total of homes included in the study. This is due to a lack of weather 

data for the first few days of the study. 

3.4.2.3.3 CO2 concentrations 

Figure 3.79 and Figure 3. 80 show how outdoor temperatures influence CO2 concentration levels 

in Danish homes. For the measured period, the average indoor CO2 concentration level is about 

1000 ppm. The concentration levels can be seen to be falling with rising outdoor temperatures. 

In Denmark it is uncommon to have mechanical ventilation systems in homes. For this reason it 

is expected that families will open windows more during periods with higher temperatures. 

Venting a home without changing other occupant behaviour significantly will result in indoor 

CO2 concentration levels closer to outdoor levels. 

Figure 3.79 Correlation between CO2 

concentration levels and outdoor 

temperatures in single-family homes. 

 Figure 3. 80 Correlation between CO2 

concentration levels and outdoor 

temperatures in multi-family homes. 

The homes included in the above graphical representations of the dependence of indoor CO2 

concentration levels on outdoor temperature are 20 less (18 single-family and 2 multi-family 

homes) than the overall total of homes included in the study. This is due to a lack of weather 

data for the first few days of the study. 
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3.4.3 Estonia [TTU] – Indoor thermal comfort and moisture loads in Estonian 

buildings 

3.4.3.1 Assessment of indoor thermal comfort and humidity loads 

Analysing the indoor climate’s dependency on outdoor climate eliminates or decreases the 

influence of the outdoor climate. 

The indoor climate was analysed separately over the measurement period as dependency on 

outdoor climate and during the summer seasons and winter seasons.  

Moisture production indoors and ventilation/infiltration airflows make the difference between 

indoors and outdoors air water vapour content, i.e. moisture excess ∆ν, g/m3: 

ei ννν −=∆
         (3.3) 

As indoor RH depends on indoor temperature, outdoor humidity, moisture production and 

ventilation airflow, there are many variables. To decrease variables in presenting humidity loads 

by moisture or vapour excess is one possibility and is the main solution used in Estonian study. 

3.4.3.2 Outdoor climate 

The lowest and highest hourly outdoor temperature during measurement period were -30 °C  

and +34 °C . The monthly average temperature during winter in different places varied between 

-5.4…-8.5 °C and during summer between +16.9…+19.5 °C. 

3.4.3.3 Dependence of indoor temperature and humidity on the outdoor temperature 

To give the overall view of the thermal condition, the dependence of the indoor temperature on 

the outdoor temperature was analysed. Thin solid lightly shaded curves in Figure 3.81 shows 

average daily indoor temperature dependency on daily average outdoor temperature. The 

dotted curve in the Figure 3.81 represents the average thermal conditions from all the 

apartments. 
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Figure 3.81 Dependence of the daily average indoor temperature on the outdoor temperature in 

brick (left) and wooden (right) apartment buildings. 

Measurements in this study showed the dependence between the indoor temperature and the 

outdoor temperature. There is a turning point at ~+15 °C average daily outdoor temperature. 

Over ~+15 °C of average daily outdoor temperature, the slope of the indoor temperature is 

larger. Over ~+15 °C of average daily outdoor temperature, the indoor temperature reaching 

over +21…22 °C and heating is not necessary any more. The average indoor temperature curve 

in studied buildings rises from +20 °C (at te -25 °C) to +22 °C (at te +15 °C) in the heating season, 

reaching +28 °C (at te +25 °C) during summer, see Figure 3.16 right. Standard deviation of daily 

average indoor temperatures during heating season was on average 1.5 °C. 

Similarly to the room temperature, the dependence of indoor RH on the outdoor temperature 

was also analysed. Each individual thin solid lightly shaded curve in Figure 3.82 represents the 

average value of the average daily indoor RH at the corresponding average daily outdoor 

temperature in one apartment. The dotted curve represents the average curve of all the 

apartments. Even though the average RH in the studied apartments stays within target values 

of RH in most of the apartments, we can see large variations of indoor RH. 

Results of indoor RH showed a dependence on the outdoor temperature, but clear turning point 

is difficult to determine. It can be at te+15 °C. Standard deviation of average daily indoor RH 

during heating season was on average ~10 %. 

Figure 3.82 Dependence of the daily average indoor RH on the outdoor temperature in brick (left) 

and wooden (right) apartment buildings. 



Annex 55 RAP-Retro  110 Subtask 1: Stochastic data 

3.4.3.4 Indoor temperature and humidity conditions during winter 

All the temperature measurement results in the measured dwellings during winter months are 

shown in Figure 3.83. Each curve represents one measured apartment. Dotted curves show the 

average of all the rooms. The average indoor temperature during the winter season from all the 

brick apartment buildings was +21.1 °C (min. average being +17.2 °C and max. average +25.3 °C) 

and in wooden apartment buildings it was +21.0 °C (min. average being +13.3 °C and max. 

average +24.8 °C; standard deviation was 2.3 °C). Even though typically the average temperature 

was between +19 and +22°C in most of apartments, large variations of temperatures show 

problems related to the control of the heating system. 

Figure 3.83 The distribution of indoor temperature during winter in brick (left) and wooden (right) 

apartment buildings. 

The average indoor RH during the winter season from all the brick apartment buildings was 33 % 

(min. average being 19 % and max. average 54 %) and in wooden apartment buildings it was 

31 % (min. average being 10 % and max. average 73 % and standard deviation was 11 %), see 

Figure 3.84. The large deviation of RH (Figure 3.84), in addition to temperature variations, 

indicates that problems exist in the ventilation system’s performance. 

Figure 3.84 The distribution of indoor RH during winter in brick (left) and wooden (right) 

apartment buildings. 
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3.4.3.5 Indoor temperature and humidity conditions during summer 

The average indoor temperature during the summer season from all the brick apartment 

buildings was +23.2 °C  (min. average being +20.2 °C and max. average +25.8 °C) and in wooden 

apartment buildings it was +24.6 °C (min. average being+22.7 °C and max. average +26.8 °C, 

standard deviation was 1.1 °C), see Figure 3.85. 

Figure 3.85 The distribution of indoor temperature during summer in brick (left) and wooden 

(right) apartment buildings. 

The average indoor RH during the winter season from all the brick apartment buildings was 

+52 % (min. average being 42 % and max. average 62 %) and in wooden apartment buildings it 

was 56 % (min. average being 48 % and max. average 69 %, standard deviation was 6 %), see 

Figure 3.86. 

Figure 3.86 The distribution of indoor temperature during summer in brick (left) and wooden 

(right) apartment buildings. 

3.4.3.6 Internal moisture excess 

Moisture excess (i.e., the difference between indoors absolute humidity νi, g/m3 and outdoors 

absolute humidity νe, g/m3) Δν, g/m3, was calculated on the basis of the measured results of the 

indoor and outdoor temperatures and RH.  

For each apartment, moisture excess values were averaged over the cold period (te ≤ +5 °C ) and 

over the warm period (te ≥ +15 °C ). The comparison of average moisture excess values is shown 

in Figure 3.87. 
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In brick apartment buildings the average moisture excess during the cold period (te ≤ +5 °C ) was 

+2.9 g/m3 (st.dev. 1.3  g/m3) and during warm period (te ≥ +5 °C ) it was +0.7 g/m3 (st.dev. 

0.5  g/m3). In wooden apartment buildings the average moisture excess during the cold period 

(te ≤ +5 °C ) was +3.0 g/m3 (st.dev. 1.1  g/m3) and during warm period (te ≥ +15 °C ) it was 

+0.7 g/m3 (st.dev. 0.7  g/m3). The maximum value from weekly average moisture excess during 

the cold period was +6.3 g/m3 and during the remaining time was +2.5 g/m3. 

Figure 3.87 Distribution of moisture excess in brick (left) and wooden (right) apartment buildings. 

In common hygrothermal design moister loads on higher critical levels is commonly used. For 

stochastic analysis average and minimum loads are needed. Different moisture excess levels 

showing moisture performance of apartments through the full range of moisture production. 

Figure 3.88 left shows indoor humidity loads in wooden apartment buildings on 90 %, average, 

and 10 % level. For hygrothermal design, more simplified and stylized curves are needed. These 

curves can be calculated from the moisture excess data, sorting the curves so that during the 

cold period (te ≤ +5 °C ) the average values of moisture excess are as follows: +1 g/m3, +2 g/m3, 

+3 g/m3, +4 g/m3, +5 g/m3, and +6 g/m3, see Figure 3.88 right. On the basis of these curves, 

moisture supply changes 1 g/m3 during the cold period (te ≤ + 5 °C ) and 0.5 g/m3 during the 

warm period (te ≥ +15…20 °C ), see Figure 3.16 right. 

  

Figure 3.88 Indoor humidity loads on 90 %, average, and 10 % level in wooden apartment (left). 

Figure 3.89 shows simplified and stylized indoor hygrothermal load curves. Humidity load curves 

can be calculated from the moisture excess data, sorting the curves so that during the cold 

period (te ≤ +5 °C ) the average values of moisture excess changes at +1 g/m3 step. On the basis 
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of these curves, moisture excess changes 1 g/m3 during the cold period (te ≤ + 5 °C ) and 0.5 g/m3 

during the warm period (te ≥ +15…20 °C ), 

This indoor hygrothermal load model and its change can be used in the indoor temperature 

calculations, where the indoor temperature should be given for program as input parameter 

(Delphin, WUFI 1D, Wufi 2D, hygIRC 1-D, 1D-HAM, MATCH, etc.) and is not generated by the 

room model of the whole buildings simulation program (IDA-ICE, WUFI+, etc.). Moving this curve 

up and down allows to great different indoor temperature conditions for stochastic calculations. 

Figure 3.89 The simplified curves for indoor temperature (left) moisture excess (right) on different 

hygrothermal load levels. 

Average indoor temperature model together with average (∆ν=3 g/m3 @ te ≤ +5 °C ) or design 

curve (∆ν=6 g/m3 @ te ≤ +5 °C ) of moisture excess give realistic indoor relative humidity models 

in cold climate conditions over whole year period, see Figure 3.90. 

 

Figure 3.90 The comparison of measured and calculated indoor RH curves on different humidity 

load levels. 

3.4.3.7 Moisture production 

Moisture production values during winter are presented as hourly results (Figure 3.91, left) and 

as specific values per square meter (Figure 3.91, right). As these values are measured during 

night they show mainly moisture production from inhabitant. In addition these values may add 

moisture production due to common household (kitchen, shower, cleaning, ect.). 
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Figure 3.91 The distribution of moisture production during winter. 

3.4.4 Finland [TUT] – Indoor loads in Finnish buildings 

3.4.4.1 Introduction 

This chapter presents results from statistical analysis on indoor moisture excess. Indoor air 

conditions were monitored from timber frame detached houses in 2002-2004 and from 

heavyweight detached houses and apartments in 2005-2008. Indoor temperature and relative 

humidity data was collected with Comark Diligence EV N2003 and N2013 data loggers. Outdoor 

data was measured at the nearest weather station by the Finnish Meteorological Institute. 

The measurement sample consists of different types of buildings with different HVAC-systems. 

In the statistical analysis, there is data from 44 timber frame detached houses and from 112 

heavyweight detached houses and apartments. 

Many activities in buildings produce moisture to the indoor air, e.g. breathing, perspiration, 

cooking, cleaning and washing. As the outdoor air creates a base level for moisture content also 

in indoor air, these indoor moisture sources create a moisture excess compared to the outdoors. 

As the differences in indoor and outdoor air try to even out, this extra moisture e.g. increases 

the moisture load on building structures. The indoor moisture excess depends heavily on the 

moisture production rate and ventilation, which both depend on user behavior. However, it is 

also linked to outdoor air temperature, which we use in the following calculations. 

3.4.4.2 Methods 

Computer programs with statistical capabilities can produce stochastic data sets with desired 

probability density functions. For example, if the average and standard deviation are known, we 

can get values from the normal distribution [74]: 

( )νν σµν ∆∆=∆ ,N        (3.4) 

where Δν is the indoor moisture excess value [kg/m3], N is for normal distribution, µΔν is the 

average value of indoor moisture excess [kg/m3] and σΔν is the standard deviation of indoor 

moisture excess [kg/m3]. 
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Typical values in residential buildings range between -0.001 kg/m3 to 0.006 kg/m3. From 

literature ([75]; [4]; [5]) we know that indoor moisture excess is connected to outdoor air 

temperature, so that the moisture excess value decreases when outdoor air temperature rises. 

The higher the indoor moisture excess is, the bigger the moisture load is for structures. In IEA 

Annex 24 Task 2 [76] it has been recommended that the dimensioning conditions would 

correspond to 10 % criticality level. That way 90 % of the time conditions would be less critical 

than with the chosen value. In this chapter we try to find the distributions of ABC and DBC that 

were presented in Equation (3.4). The indoor moisture excess would be written as: 

( )),(),,(),,( 1
,

1
, stdestdaveeavestdavee PTPTNPPT −

∆
−
∆ ΦΦ=∆ ννν   (3.5) 

where Te is the outdoor air temperature [°C], Pave is the percentile of average moisture excess 

values in measured houses, 0…1 [-], Pstd is the percentile of standard deviation of indoor 

moisture excess, 0…1 [-] and Φ-1 is the inverse normal cumulative distribution function [kg/m3]. 

Measurement data from [4]; [5] were used to define distributions of ABC and DBC. First the 

indoor moisture excess was calculated for each time step (hour) as the difference between 

indoor and outdoor air moisture content. Second, the moisture excess values were divided into 

subgroups for each measured building/apartment and temperature degree. Third, average and 

standard deviation were calculated for these subgroups and presented as a function of outdoor 

temperature (Figure 3.92). Fourth, analytical functions were fitted to data (Figure 3.93 and Table 

3.22). 

Because these values don’t however represent the true 10% criticality value, the 90% percentiles 

were calculated from the original subgroups and plotted for each building/apartment along with 

their average and standard deviation values (Figure 3.94). Curve fitting was used to find 

continuous functions that would match those values (Table 3.23). 

It was noticed that the normal distribution parameters of indoor moisture excess average 

resemble the logistic curve in some way (Figure 3.93 and Figure 3.94). The standard deviation 

on the other hand can be better described with a linear and an exponential function (Figure 

3.93). Simplified distribution parameter functions based on visual inspection were selected and 

are presented in Table 3.24. 

Statistical analysis was done with Matlab R2011b. The hourly measurement data was imported 

from Excel-files and organized into structures. Data manipulation was done with m-files and 

Matlab cftool (Curve Fitting Tool). Different mathematical functions were tested to find the 

highest R2-value and reasonable usability. If measurement data had long empty sections or had 

clearly abnormal values, the whole data set for that case was removed from the analysis. 
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3.4.4.3 Results 

Figure 3.92 show the average and standard deviation of the indoor moisture excess 

corresponding to each outdoor temperature degree. One curve means one house/apartment. 

Figure 3.92 Top: Heavyweight detached houses and apartments. Bottom: Timber framed 

detached houses. Left: Average indoor moisture excess values for each building and temperature 

degree. Right: The standard deviation of indoor moisture excess in each building and 

temperature degree. 

Figure 3.93 show the average and standard deviation of building-wise averages and standard 

deviations. 
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Figure 3.93 Average (left) and standard deviation (right) of indoor moisture excess. Top row: 

Heavyweight detached houses and apartments. Bottom row: Timber framed detached houses. 

The next table shows the resulting equations from the fitting procedure. 
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Table 3.22 Curve fitting results. Moisture content values are in kg/m3 and temperatures in °C. 

Variable Te is the outdoor air temperature. 

Inverse cumulative distribution function parameters 

for indoor moisture excess average 

Inverse cumulative distribution function 

parameters for indoor moisture excess 

standard deviation 

Heavyweight detached houses and apartments: 
Heavyweight detached houses and 

apartments: 

if Te ≤ 15 
µµ =-1.107e-6*Te^2  -0.0001001*Te 

+0.001711 
µσ=1.457e-5*Te+0.0008104 

else  µµ =7.251e-5*Te -0.001308    

      

  σµ = 1.67e-8*Te^3 + 3.898e-7*Te^2  σσ = exp(-11.79+0.1157*Te) +0.000203 

      -1.974e-5*Te+ 0.0006364   

Timber-framed one family houses: Timber-framed one family houses: 

if Te ≤ 18 

µµ = -9.23e-7*Te^2-9.216e-5*Te + 

0.001463 µσ= +0.0002557*(Te+33)^0.4098 - 0.0001431 

else 

µµ = -7.78e-6*Te^2 + 0.0004724*Te-

0.006646   

      

  σµ = 1.001e-9*Te^4 + 7.842e-9*Te^3   σσ = 0.0002039 + exp(-13.67+0.1888*Te) 

  

    -8.359e-7*Te^2 - 1.137e-5*Te + 

0.0007692   

µµ is the average value of averages and σµ is the standard deviation of averages. µσ is the average of 

standard deviation values and σσ is the standard deviation of standard deviation values. 

It is not recommended to extrapolate function values outside the range that they were made 

for. Suitable temperature range is approximately -30…25 °C. 

From the previous equations we know the distribution of house averages. However, to get a 

true 10 % criticality level, we also want know the situation when 90 % of houses have lower 

indoor moisture content 90 % of the time. This is calculated here by choosing the 90 % 

cumulative distribution function value from each building and temperature degree to further 

analysis, while the standard deviation is kept the same as with the average values. It is not 

known how standard deviation changes with different indoor moisture excess levels, but this is 

done as the first method to get onwards. The next figures in Figure 3.94, show the 90 % indoor 

moisture excess values from each house and the average and standard deviation of those values. 
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Figure 3.94 Top row: 90 % CDF values of indoor moisture excess of the temperature degree-wise 

subgroups. Bottom row: Average and standard deviation of the 90 % CDF values. Distribution 

parameters for the indoor moisture excess standard deviation are kept the same than before. 
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Table 3.23 Normal distribution parameters for the indoor moisture excess 90 % percentile values. 

Inverse cumulative distribution function parameters for indoor 

moisture excess 90 % value 

Heavyweight detached houses and apartments: 

if Te ≤ 

15 
µµ =-1.282e-6*Te^2  -8.24e-5*Te +0.0028 

else 
µµ =-2.286e-6*Te3 +0.0001433*Te2 -0.002869*Te 

+0.01995 

    

  σµ = 5.531e-10*Te4 +2.605e-8*Te^3  

      +2.849e-9*Te2-2.292e-5*Te +0.0008123  

Timber-framed one family houses: 

if Te ≤ 

18 µµ = -1.014e-6*Te^2 -6.328e-5*Te +0.002761 

else µµ = -1.089e-5*Te^2 +0.000569*Te -0.005536 

    

  σµ = 1.316e-9*Te^4 +1.743e-8*Te^3 -1.059e-6*Te^2    

     -1.559e-5*Te +0.0009331 

 

The normal distribution parameters for the standard deviation are kept the same than before. 

These type of equations are however hard to remember and somewhat difficult to use. Also in 

actual buildings there are many types of case-specific solutions that affect the amount of indoor 

moisture excess. 

The average and standard deviation of average indoor moisture excess is somewhat similar to 

logistic function. The average of indoor moisture excess standard deviation has a linear or power 

function –type behavior while the standard deviation of the standard deviation has an 

exponential growth. Based on Figure 3.93 and Figure 3.94, if we use the logistic function and 

simplify the numerical values, we come up with the following functions for the inverse 

cumulative function parameters. 
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Table 3.24 Chosen values for moisture analysis. 

Inverse cumulative distribution function 

parameters for indoor moisture excess 

average 

Inverse cumulative distribution function 

parameters for indoor moisture excess 

standard deviation 
 

  

  µσ=1e-5 * Te + 0.001 

    

µµ,max=0.004 kg/m3   

µµ,min= 0.0015 kg/m3   

T25%=10°C   
 

  

  σσ = exp(-12+0.12*Te) +0.0002 

    

σμ,max=0.001 kg/m3   

σμ,min=0.0005 kg/m3   

    

 

When temperature is T = 0 °C, the indoor moisture excess has its average value. Temperature 

T25 % is used as a scaling parameter, where the indoor moisture excess has increased roughly 25 

% from the minimum value (1/(1+e) ≈ 0.25). 

Figure 3.95 shows an example with these simplified indoor moisture excess values. The average 

and standard deviation values correspond to 90 % percentile values both in time and among 

measured buildings/apartments. 

 

Figure 3.95 90 % percentile values of indoor moisture excess average and standard deviation. 

Functions are calculated from normal distributions with functions given at the previous table.  

The following equation is an approximation to the outdoor air temperature dependent indoor 

air moisture excess, corresponding to the 10 % criticality level: 
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Values depend only on the outdoor air temperature ([T] = °C). 

3.4.4.4 Discussion 

Indoor moisture excess average and standard deviation functions were determined and can be 

used in stochastic calculations. Both variables depend on the outdoor air temperature and 

different criticality levels can be chosen if desired. 

Normal probability density function parameters for average moisture excess were calculated 

from both indoor moisture excess averages and from 90 % values. In winter the average values 

of both are quite close to 4 g/m3, but the difference becomes bigger when the outdoor air 

temperature rises. The average values of each house in the summer (Te = +15 °C) is roughly in 

the range -1…1 g/m3. When 90 % values are used the moisture excess is about 0…2 g/m3. In both 

cases however, the standard deviation is close to 1 g/m3 whole year around. 

The average or 90 % values correspond basically to the indoor moisture excess values given in 

literature e.g. in [75]. In addition to that, also standard deviation was calculated which gives 

information for stochastic calculations. The average standard deviation in indoor moisture 

excess for each house/apartment increases with outdoor temperature. With heavyweight 

detached houses and apartments standard deviation increases almost linearly. For timber 

framed houses the increase was more square root –type. The standard deviation of standard 

deviation was quite constant throughout the year, about 0.2 g/m3. The variability between 

houses starts to increase exponentially when outdoor air temperature increases to 20 °C. 

As a result of the calculations, we have equations for distributions for both indoor moisture 

excess average and standard deviation (Eq. 1). Sanders [76] has recommended to use 10 % 

critical values for loads in building physical calculations. This is clear with average moisture 

excess, because more moisture in the system typically has small effect on temperatures but 

increased moisture load increases moisture-related risks. The same criterion has been chosen 

also for the standard deviation, because the impact of varying conditions is unlinear [77]. It is 

not studied here, but the high moisture load times are assumed to have bigger negative impact 

on moisture conditions than the same amount of drier times has positive impact. 

Histograms and normal probability plots of indoor moisture excess for each house and 

temperature degree were monitored during the calculations. In many cases the moisture excess 

had a long tail and so some other distribution might describe the process better than normal 

distribution, e.g. gamma distribution. However because of familiarity and reasonable accuracy 

the normal distribution was eventually chosen. 

Also differences came up with the Matlab’s graphical cftool. The resulting coefficients for the 

same equation might vary when changing through different options. This can be at least partly 

due to the initial guesses and tolerances. It is good to arrange e.g. visual check on curve fitting 

results. 
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3.4.5 Germany input (IBP) 

3.4.5.1 Introduction 

The following subsections address the excess moisture of the residential houses presented in 

section 2.7. To estimate the excess moisture, data for outdoor temperature and relative 

humidity as well as indoor temperature and relative humidity is necessary. In this case, only for 

42 houses a complete dataset has been available. 

The moisture excess is linked to indoor moisture sources such as cooking, washing, perspiration, 

user behavior etc. The outdoor air has a certain amount of water content depending on the 

weather conditions, while the indoor air water content depends on the moisture production 

rate and the base level of the outdoor air water content and air exchange. Physical principles 

imply that the differences try to even out. The data is relevant in such aspects as extra moisture 

increases the moisture load on building structures and therefore e.g. increases the danger of 

mold growth. 

At first the general distribution of the excess moisture is analyzed as well as trend over the year 

and the differences between room types. Secondly its correlation between other parameters is 

investigated.The excess moisture is defined as absolute humidity indoor – absolute humidity 

outdoor for each hour. 

3.4.5.2 Excess Moisture distribution 

Figure 3.96 shows the excess moisture distribution of each single house (orange) and all data 

combined for each hour. 

 

Figure 3.96 Excess moisture distribution. 

The curve highly suggests a normal distribution; therefore a Shapiro Wilk test with 3000 samples 

has been performed to verify this assumption. The results show a very high possibility that the 
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data follows the normal distribution (probability of 6e-09 to reject the hypothesis of normal 

distribution). 

For further analysis, the influence of the room types is investigated. Figure 3.97 shows the 

distribution function of different room types. The plot indicates that there is hardly any variance 

between different room types. Apart from the bathroom, which has the highest values, all rooms 

have more or less the same amount of moisture excess. Detailed data can be obtained in Table 

3.25. 

By analysing this data it can be concluded that the air moisture content spreads relatively 

consistent in between the building envelope; hence the room type does not play a significant 

role. 

 

Figure 3.97 Excess Moisture distribution for different room types. 

 

Table 3.25 Summary excess moisture data. 

 Min. 
1st 

Qu. 
Median Mean 

3rd 

Qu.     
Max. SD 

Bath -3.0 2.8 4.0 4.0 5.2 12.8 1.8 

Child -2.3 2.2 3.4 3.4 4.6 10.7 1.7 

Bed Room -7.1 2.3 3.4 3.5 4.7 11.9 1.8 

Living Room -10.5 2.3 3.7 3.6 5.0 15 2.2 

Total -10.5 2.2 3.9 3.4 4.5 15 1.8 
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3.4.5.3 Excess Moisture profiles 

Plotting the average excess moisture excess over the daytime does not display a significant 

divergence throughout the day (Figure 3.98). During night times, the excess moisture seems to 

be slightly lower most likely due to less activity in moisture production. However, the values only 

vary around 0.4 g/m³ at maximum. 

 

 

Figure 3.98 Excess Moisture day profile. 

In contrast, the changes with the time of the year as Figure 3.99 confirms. Based on the 

assumption, that in cold months of the year the excess moisture is significant higher, the 

influence of the outdoor climate conditions are investigated in the following section.  
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Figure 3.99 Excess Moisture year profile. 

3.4.5.4 Excess Moisture in correlation with other parameters 

The following plots show the average excess moisture for a certain temperature or relative 

humidity interval. The intervals are defined as 1 °C or 1 % (e.g. all values measured from 9.5 °C 

to 10.4 °C are summarised into the interval of 10 °C). 

In contrast, the outdoor climate conditions clearly influence the excess moisture as Figure 3.100 

and Figure 3.101 show. 

The outdoor temperature is negatively correlated between -20 °C and 10 °C but increases excess 

moisture when increasing temperature from 10 °C to 30 °C. It should be pointed out that the 

data greater than 35°C is not very reliable due to the small dataset. 

Pearson's product-moment correlation estimates a very strong correlation of -0.89 / -0.91 

between excess moisture and outdoor temperature respectively relative humidity. 
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Figure 3.100 Excess Moisture in correlation 

with outdoor temperature. 

Figure 3.101 Excess Moisture in correlation 

with outdoor relative humidity. 

 

3.4.6 Sweden [CTH] – Base data for moisture production estimation 

The results of simulations of indoor moisture production mentioned in 2.10.2 are provided in a 

Excel file, in the Digital Appendix. The results are presented as annual averages for 10000 

simulated households, both single and multi-family dwellings. The production rates are also 

presented for each activity, as annual averages. Further, the hourly variation of the indoor 

moisture production is presented for 1000 simulated Swedish multi-family dwellings. 

Annual Averages of Indoor Moisture Production.xlsx 

Simulated Indoor Moisture Production in 1000 Multi-Family Dwellings.xlsx 

3.4.7 Sweden [LTH1] – Indoor loads in case Situgna 

Building Physics at Lund University has measured in two apartments in a two-storey building 

close to Stockholm every five minute during a number of years. The measurements presented 

here represent two years of data from July 2009 to June 2011 with samples taken every five 

minutes with a few shorter breaks due to power outs during the construction phase. The data is 

presented unaltered with temperature (°C), relative humidity (%) and moisture supply (g/m3) 

diagrams. Preliminary results from the Sigtuna study can be found in [54]. More information 

about indoor loads in Swedish buildings is published in [78] and [79]. 

3.4.7.1 Temperature and relative humidity 

Measurements of temperature (°C) and relative humidity, in two dwellings and outdoors, from 

July 2009 to June 2011 is shown in Figure 3.102 and Figure 3.103. In March 2011 the tenant has 

been vacated, because of complaints from the inhabitants about the indoor environment, and 

a reduction in the variation and average values of both temperature and RH is notable. As 
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expected both the indoor temperature and RH is lower in winter than in summer. Indoor sensors 

In2 and In3 in Figure 3.102 and Figure 3.103 are close to each other and in the same apartment, 

see Figure 2.31. The differences between different indoor sensors at a given time seem generally 

not very big. 

However, when comparing the cumulative curves in Figure 3.104 andFigure 3.105 there are 

obvious differences between the three sensors in the two apartments. The most apparent 

difference when looking at temperature is that it is always warmer in position In1. 

In summer 2010 the outdoor temperature is above +30 °C, which is uncommon for Sweden. 

From Figure 3.88 and Figure 3.89 it is shown that also the indoor temperature is above +30 °C. 

The median temperature for In2-3 is around +21,5 °C and approximately +23 °C for In1. 

According to [78] the average temperature for multi-family dwellings in Sweden is 22,3 ± 0,2 °C 

during the heating season. It seems as if the measured temperature in In2-3 is somewhat lower 

than for the average Swedish multi-family dwelling. 

In rare occasions the indoor RH can be as high as 70-75%. Since the surface temperature on 

exterior walls is often lower than the indoor temperature there might be a risk for mould growth. 
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Figure 3.102 Temperature (°C) in two dwellings and outdoors in Sigtuna from July 2009 to end of June 2011. 
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Figure 3.103 Relative humidity (%) in two dwellings and outdoors in Sigtuna from July 2009 to end of June 2011. 
Figure 3.104 Temperature (°C) cumulative in two dwellings and outdoors in Sigtuna from July 2009 to end of June 2011. 
Figure 3.105 Relative humidity (%) cumulative in two dwellings and outdoors in Sigtuna from July 2009 to end of June 2011. 
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3.4.7.2 Moisture supply 

Moisture supply (g/m3) has been calculated from temperature and relative humidity outdoor 

and indoor. As always is moisture supply the difference between the vapour concentration 

(g/m3) indoors and outdoors. From Figure 3.106 it is obvious that moisture supply is lower after 

March 2011, i.e. without people and activities from living in an apartment the moisture supply 

is substantially reduced. Figure 3.106 also show that the moisture supply is higher in winter than 

in summer. This also expected since some moisture activities as drying of clothes indoors are 

rare in summer. It is also probable to have higher ventilation in apartments from window 

opening when the outdoor temperature is high. 

Figure 3.107 show the cumulative moisture supply (g/m3) in two dwellings. The median moisture 

supply is higher than reported by [78]. According to [78] the average moisture supply for 

Swedish multi-family dwellings is approximately 1,2 g/m3 during the heating season. A high 

moisture supply generally indicates that there is something wrong with the ventilation or that 

the inhabitants are acting in an “unexpected” way. However, it is normal to have short peaks 

with high moisture supply and also negative moisture supply as seen in Figure 3.106, especially 

in position In2, and in Figure 3.107. Negative moisture supply can occur if the outdoor climate 

changes rapidly. It can also happen frequently as we normally cannot take into account for the 

time delay between vapour concentration outdoors and indoors. A third possible reason for 

negative moisture supply is the “volume factor”, i.e. when cold air enters into a warm building 

the air will expand and thus the vapour concentration will decrease. However, in this study we 

have taken into account the "volume factor". 
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Figure 3.106 Moisture supply (g/m3) in two dwellings in Sigtuna from July 2009 to end of June 2011. 
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Figure 3.107 Moisture supply (g/m3) cumulative in two dwellings in Sigtuna from July 2009 to end of June 2011. 
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3.4.8 United Kingdom [UCL] – Indoor loads in the Warm Front study 

3.4.8.1 Collected raw data 

A total of 1871 sets of living room and bedroom temperature, relative humidity, and mould data 

were collected from a subset of 1481 dwellings with characteristics given in Table 3.26, thus 

including repeat as well as both post- and pre-intervention measurements. As with the previous 

sample (i.e. for air infiltration rate measurements presented in section 3.3.8), this sample is 

dominated by dwellings built between 1900-1950 and cavity masonry walls. Most of the 

dwellings are however semi-detached in this sample. The data are cleaned of repeat 

measurements and if both pre- and post-intervention measurements exist for the same 

dwelling, only the pre-intervention measurements are kept so that the data represents a single 

stock. 

Table 3.26 Dwelling characteristics of sample in which air temperature, relative humidity, and 

Mould Severity Index measurements were taken. 

Age Wall type Building type 

Pre 1900 11 % Cavity masonry 68 % Terraced 7 % 

1900-1950 52 % Solid brick 29 % Semi-detached 51 % 

1951-1976 32 % Timber framed 1 % Flats 38 % 

Post 1976 5 % Other 2 % Detached 5 % 

 

3.4.8.1.1 Winter internal temperatures and relative humidity 

The temperature and relative humidity (RH) were measured in the main living room and main 

bedroom using Gemini TinyTag data loggers at half-hourly intervals for periods of 2 to 4 weeks 

between December and early May. The sensors were positioned away from direct sources of 

heat and light on a sideboard or shelf at approximately 1m above the ground. 

3.4.8.1.2 Winter external temperatures and relative humidity 

Measurements of external temperature and RH were also recorded in central locations in each 

of the survey areas.  
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3.4.8.1.3 Mould Severity Index  

Table 3.27 Interpretation of MSI. 

MSI range Significance 

1-2 Slight 

3-4 Moderate 

>5 Severe 

 

Each property underwent a detailed visual inspection regarding the occurrence and extent of 

mould on windows, walls and ceilings, though no attempt was made to identify the species. The 

state of mould growth was quantified using the Mould Severity Index (MSI): 

MSI     =  the number of rooms with mould growth 

+1 if there is mould in either living room 

+1 if there is a match with the medium mould photograph  

+2 if there is a match with the worst mould photograph             (1) 

Thus it is defined such that a dwelling will have an MSI of at least one if there is any mould 

growth in any one single room. The significance of the index is given in Table 3.27. The 

calculation of MSI requires the quantification of the number of rooms with mould with an extra 

penalty if it is found in any living rooms as these are generally heated to a higher level than other 

rooms in the dwelling. Then a comparison of the mould growth is made against standard 

photographs showing three classes of mould severity ranging from slight, medium to the worst.  

3.4.8.2 Analysis 

3.4.8.2.1 Post-processing of raw data 

Standardized internal temperature 

The living room and bedroom temperatures were standardized to an external temperature of 

5°C to account for the variability in weather. This was carried out by excluding data from any 

day where the maximum temperature was above 15 °C (above this temperature, the heating 

system would normally be switched off) and from any monitoring period during which the 

coldest day had a maximum temperature above 7 °C. For living room temperatures, data was 

analysed for between 8:00h to 20:00h and for bedroom temperatures between 20:00h to 8:00h. 

For each dwelling, the selected internal temperatures were regressed with the corresponding 

external temperatures, including quadratic terms to allow for a non-linear relationship. The 

internal temperature and its standard error were then estimated from this regression equation 

at an external temperature of 5 °C.  
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Standardized vapour pressure excess 

The living room and bedroom relative humidities were also standardized to account for the 

variability in weather. Firstly, the hourly vapour pressure excess was calculated for the living 

room and bedroom of each dwelling based on the monitored relative humidity. For each 

dwelling, the internal vapour pressure excess was regressed with the external temperature using 

quadratic terms to allow for any non-linearities in the relationship. The internal vapour pressure 

excess and its standard error were then estimated for an external temperature of 5 °C.  

3.4.8.2.2 Statistical summary 

Table 3.28 Summary statistics for distributions of standardized internal temperature in living 

room and bedrooms, standardized internal vapour pressure excess in the living room and 

bedroom, and the mould severity index, after zero temperature and humidity entries are 

removed (this is why the number of dwellings vary). 

 
Number of 

dwellings 
Mean Median 

Standard 

deviation 

Standardized internal temperature in 

living room (°C) 
1007 18.8 19.1 2.9 

Standardized internal temperature in 

bedroom (°C) 
968 17.1 17.0 3.0 

Standardized internal vapour pressure 

excess in living room (Pa) 
894 317.8 308.2 165.1 

Standardized internal vapour pressure 

excess in bedroom (Pa) 
814 327.5 315.8 167.9 

Mould Severity Index 1481 0.44 0 1.19 
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3.4.8.3 Stochastic data sets 

 

Figure 3.108 Distribution of standardized internal temperatures (top), standardized vapour 

pressure excesses (middle), and mould severity indices (bottom). 

Figure 3.108 shows the distribution of standardized internal temperatures and standardized 

vapour pressure excesses for the living room and bedroom, and MSI for the whole dwelling.  
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3.5 Weather 

3.5.1 The Netherlands [TUE] – Case study on the urban heat island 

The urban heat island intensity was measured at five locations in Rotterdam, subsequently the 

frequency distribution of the UHI intensity was determined as well as the diurnal variation of 

the UHI intensity. This section will first describe the experimental set-up, followed by a 

description of the method used to determine the diurnal variation of the UHI. At the end of this 

section a description the measurement results given.  

 

3.5.1.1 Experimental set-up 

At five locations in Rotterdam the weather was measured (as shown in Figure 3.109) from 01-

04-2011 to 31-10-2012 (579 days) by Standard Campbell weather stations with an added 4-

component radiation sensor (Hukseflux NR01) and Black Globe temperature sensor (Sensor 

Data). The measured components that are used in this study are the dry bulb temperatures in 

the urban areas, which are compared to the dry bulb temperature in the rural area (at 

Rotterdam Airport). The five locations where the measurements took place in the city of 

Rotterdam were; (1) City center; (2) Ommoord; (3) Rijnhaven; (4) Spaanse polder; (5) 

Vlaardingen. For the rural area, the measurements of the Royal Dutch Meteorological Institute 

(KNMI) of Rotterdam were used. This station is located at Rotterdam airport roughly 5 km from 

the centre of Rotterdam and mainly consists of grass land. The time interval at which the data is 

considered is by one hour time steps, resulting in a total of 13,896 readings for each station.    

 

 

Figure 3.109 Measurement locations in Rotterdam (NL). 
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3.5.1.2 Method for determination of diurnal variation 

The diurnal variation of the UHI intensity in Rotterdam was analysed as a function of time, which 

enables to the time of maximum and minimum UHI intensity as well as the typical variation over 

a day. This diurnal variation of the UHI was determined by a Fast Fourier transformation applied 

to the average UHI intensity of Rotterdam. As a result the sinusoidal functions with the best fit 

for the diurnal variation are identified. The transformation was performed for periods of one 

month, this monthly period is equal to the period used to indicate the diurnal variation in e.g. 

[80]. The Fourier transform was performed by using the Fast Fourier transform algorithm [81] in 

MATLAB R2012a (version 7.14.0.739). In the evaluation of the transformation three harmonics 

as well as a constant were taken into account, namely with a frequency of one day, half a day 

and one third of a day. This leads to the following expression for the transformations for each 

month. 

 

UHII�t� � a� + ∑ AM%MN� ∙ OPQ�>R�S + T�     (3.7) 

where UHII is the urban heat island intensity at a specific time, a0 is the constant value for each 

month, Ak the amplitude of a specific harmonic of a specific month, ω0 the angular velocity and 

 k the phase change for a specific harmonic. 

 

3.5.1.3 Results of UHI measurements 

The analysis of the hourly data from 01-04-2011 to 31-10-2012 showed an average urban heat 

island intensity over this period between 0.53 and 1.16 °C for the five locations. The maximum 

UHI intensity varied between 5.3 and 8.8 °C for the five locations, the maximum was found in 

the Center. The frequency distribution of the UHI for the five locations over the complete period 

are shown in Figure 3.110, the indicated distribution is the generalized extreme value 

distribution. A negative UHI intensity is not uncommon and is reported in several studies e.g. 

[21], [22], [82], [83], [84], [85], [48], [86], [87], [88], [89], [29]. [22] reported that the occurrence 

of a negative urban heat island intensity might be restricted to city centres with deep and narrow 

urban canyons (higher aspect ratios). This is supported by the measurements, the strongest 

negative intensity was namely found in Rijnhaven, which had the highest aspect ratio of the five 

locations (aspect ratio Rijnhaven: 1.11). 
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Figure 3.110 Measured UHI intensities from 01-04-2011 to 31-10-2012 for five locations as well 

as the average UHI intensity. The shown distribution is a fitted generalised extreme value 

distribution. 

3.5.1.4 Diurnal variation of the urban heat island 

The diurnal variation of the UHI intensity in Rotterdam was determined by a Fourier 

transformation of the average UHI intensity at the five locations in Rotterdam. Figure 3.111 

shows the average diurnal variations for each month in one year from November 2011 to 

October 2012. It is shown that the variation during a day changes over the year. The maximum 

urban heat island intensity was found during the night and the minimum roughly at 10:00h. 

Moreover, it is visible from the average UHI intensity that the effect decreases rapidly during 

the morning and increases gradually during the day reaching its maximum during the night. The 

UHI intensity is relatively constant during the night (20:00h to 5:00h), which was also reported 

by e.g. [90]. 
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Figure 3.111  Diurnal variation of the UHI intensity in Rotterdam. The time is displayed in UTC+1 

throughout the complete year. 

3.5.2  Sweden [CTH] – Future climate scenarios 

3.5.2.1 Available climate data (raw) 

These are the raw weather parameters received from the Rossby Centre, SMHI.  

Table 3.29 Raw weather parameters from Rossby Centre. 

Weather parameter Unit Time resolution 

downward longwave radiation at the surface  [W/m2] 30 minutes 

corresponding shortwave radiation  [W/m2] 30 minutes 

air temperature at the 2-metre level  [K] 3 hours 

specific humidity at the 2m level  [kg water/kg air] 3 hours 

WE wind speed components at the 10-metre level  [m/s]  3 hours 

SN wind speed components at the 10-metre level  [m/s] 3 hours 

total precipitation  [mm] 30 minutes 

snow precipitation  [mm] 30 minutes 

total cloud coverage  [0-1] 3 hours 

total air pressure  [N/m2] 30 minutes 

cloudiness of low-level clouds  [0-1]  

cloudiness of mid-level clouds  [0-1]  

cloudiness of high-level clouds  [0-1]  

rain precipitation  [mm] 6 hours 

3.5.2.2 Available climate data (processed) 

The raw data have been processed and the following data sets are available for building 

simulations for all the climate scenarios and with the time resolution of one hour.  

Table 3.30 Processed raw data available for building simulations. 
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Weather parameter Unit 

Air temperature [oC] 

Relative humidity [%] 

Global radiation  [W/m2] 

Diffusive horizontal radiation [W/m2] 

Direct normal radiation or Beam  [W/m2] 

Long wave sky radiation [W/m2] 

Wind direction [degree] 

Wind speed  [m/s] 

More details about how the raw data are processed can be found in [1], chapter 2. 

3.5.2.3 Available climate scenarios 

Climate scenarios are result of different global climate models, regional climate models, 

emission scenarios, initial conditions and/or spatial resolution. Available climate data sources 

are shown below, and more information about them can be found in [91] and [92].  

For the exact combinations of climate data sources into climate scenarios, contact Building 

Physics research group on info@byggnadsteknologi.se. All data sets cover the period of 1961-

2100 (140 years).  

Table 3.31 Climate scenarios. 

Cities 
Global climate 

models 

Regional 

climate models 

Emission 

scenarios 

Initial 

conditions 

Spatial 

resolution 

Gothenburg CCSM RCA3 A2 1 25 x 25 km 

Lund CNRM KNMI-RACMO2 B1 2 50 x 50 km 

Stockholm ECHAM5 DMI-HIRHAM5 B2 3  

Östersund HADCM3  A1B   

 IPSL     

Besides, we have RCA3-ERA40 reanalysis that constitutes a realistic description of the state of 

the atmosphere including its evolution in time for the period 1961-2002. 

3.5.3 Sweden [LTH2] – 9 years climate measurements 

In order to create data suitable for heat and moisture calculations several corrections had to be 

made. The aim was not to create data which matched the original situation as much as possible. 

It was to create realistic but relatively tough data, i.e. be sure to create data with a high rather 

than low moisture load. 

The steps taken to create the data were: 

1. Sanitize the data to remove obvious strange values. 

2. Complement missing days of data by using full periods before and after. 

3. Complement missing hours by interpolating between hours before and after.  

4. Calculate missing long wave radiation data by formulas according to [93]. 

5. Distribute precipitation to hourly values according to [93]. 

6. Adjust the relative humidity by scaling so that there was 100 % at least once every 3 

month (12 weeks). This was done using a 12 week moving average as base for the 

scaling. 
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Figure 3.112 shows some of the parameters for all the locations and all the 9 years. Figure 3.113 

and Figure 3.114 show the data for Lund. 

 

Figure 3.112 The climate for all years and all positions. 
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Figure 3.113 Temperature, relative humidity, wind speed and precipitation in Lund. 
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Figure 3.114 Global, diffuse and long-wave radiation for Lund. 
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4 SYNTHETIC	DATA	
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4.1 Introduction 

The fourth chapter presents work on synthetic data, demonstrating how additional sets of 

valuable information can be prepared with more advanced analysis. The following examples are 

provided: 

• Extrapolation of material properties from comparison of incomplete material data with 

generic materials and via regression analysis. 

• Determination of window opening behaviour according to recorded temperatures and 

building type, area and airtightness.  

• UHI intensity determination using data on wind speed, relative humidity, global 

horizontal irradiance and cloud cover. 
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4.2 Germany [TUD]: Extrapolation of 

incomplete material data 

Material data in the literature is not always complete, i.e., the density and thermal conductivity 

are known, but other properties are missing. This kind of data is not qualified for simulation use, 

but still a valuable source for the simulation tools and should be utilized to expand a material 

database. In this section, the methods to extrapolate missing properties of incomplete material 

data set are illustrated. 

As shown in Figure 4.1, missing properties of incomplete material data can be completed by two 

ways:  

1. By comparing the available properties of the incomplete material data with those of 

generic materials (Section 3.1) in the same physical material group, a most similar generic 

material is selected. The missing properties of the incomplete material data can be 

supplemented by the material properties of the most similar generic material. This 

approach actually uses the average material property from one material cluster to 

substitute the missing property of the incomplete data. 

2. The relationships among material properties, deduced from the measured high-quality 

data by regression analysis, can be applied to complete the missing properties. Regression 

analysis can be based on the physical material group level, which means more materials 

are included for the analysis but may lead to a wide range of uncertainty, or based on the 

material cluster level, which results in a narrow range of uncertainty since fewer materials 

are involved but may have the problem with statistics basis. The decision on which level 

to choose is dependent on the number of materials in the physical material group and in 

the material cluster, and the quality of the regression model, e.g., the coefficient of 

determination R2. 

 

 



Annex 55 RAP-Retro  149 Subtask 1: Stochastic data 

 

 

Figure 4.1 Extrapolation of the missing properties of incomplete material data by the application 

of generic materials and regression analysis. 

Relations between basic parameters in building brick category were investigated as one example 

for the application of regression method. Material data was collected from IBK laboratory 

measurement (TUD), [64], [65], and [66]. For bricks, most parameters have a linear relationship 

with density (Figure 4.2). While water absorption coefficient and water vapour diffusion 

resistance factor cannot be directly deferred from density, the relation between them can be 

clearly expressed by a nonlinear regression equation. Thus, if one of the parameters is not 

available, the other one can be estimated by the regression equation. 

Open porosity, θpor:  

0.994-0.000372·ρ              (R2=0.966, 45 materials)    (4.1) 

Capillary moisture content, θcap:  

0.880-0.000379·ρ             (R2=0.631, 40 materials)    (4.2) 

Effective saturation moisture content, θeff :  

1.028-0.000411·ρ             (R2=0.726, 33 materials)    (4.3) 

Specific heat capacity, c0:   

1415.357-0.305·ρ              (R2=0.550, 39 materials)    (4.4) 

Thermal conductivity, λ:  

-0.712+0.001·ρ              (R2=0.553, 56 materials)    (4.5) 

Water vapor diffusion resistance factor, μdry:  

0.087·exp(0.003·ρ)              (R2=0.289, 52 materials)    (4.6) 

Water absorption coefficient, Aw:  

1.135-0.001·ρ                             (R2=0.293, 49 materials)    (4.7) 
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material data

Generic materials
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Water vapor diffusion resistance factor, μdry:  

9.397+1.715/Aw-0.002/Aw
2         (R2=0.578, 45 materials)       (4.8) 

 

Figure 4.2 Scatter plots of material properties of specific bricks. 

Moisture storage capacity is one of the most important material characteristics. It describes the 

amount of moisture accumulated in the material pores at the consecutive environmental 

conditions. In general, it can be achieved by two tests: sorption isotherm measurement in the 

hygroscopic range and pressure plate measurement in the over hygroscopic range. These two 

measurements usually take several weeks or months to reach the equilibrium condition. 

Therefore, measurement steps are not always sufficiently complete to derive a continuous 

moisture retention curve in the literature. In cases where only some data are available, 

regression analysis can be applied to estimate unmeasured moisture contents based on the 

available data.  

For instance, moisture contents in the over hygroscopic range can be predicted by moisture 

contents w0, w4.78, and w5.60 [18]. The coefficients of regression models are summarized in 

Table 4.1. For convenience, logarithmic capillary pressures is represented by pC (pC=log10(-Pc)). 

The symbol w4.78 denotes moisture content at pC4.78. w6.56 (97.4 %) denotes moisture 

content at 97.4 % relative humidity, corresponding to pC6.56. In the table, Ro denotes that 

regression coefficients and R2 are derived from robust regression analysis, which is developed 

as an alternative to the least-squares estimation. It keeps the outlier in the dataset but tries to 

dampen its influence on the estimation of the regression coefficients. So robust regression 
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model will not be sensitive to these unusual outliers. Other coefficients are based on least-

squares regression.  

Table 4.1 Coefficients of regression models based on w0, w4.78, and w5.60 in the building brick 

category. 

 constant w0 R2 

w3.48 -0.025 1.053 0.985 

w3.78 -0.046 1.100 0.966 

w4.18 -0.093 1.178 0.926 

 constant w4.78 R2 

w4.48 0.041 0.888 0.961(Ro) 

w4.95 -0.028 1.033 0.964 

 constant Log(w5.60) R2 

Log(w5.30) 0.161 0.987 0.908 

Log(w5.90) -0.103 0.970 0.979 (Ro) 

Log(w6.15) -0.162 0.986 0.940 

For example, the regression equation can be expressed by 

3.48 0.025 1.053 0w w= − + ⋅          (4.9) 

( 5.30) 0.161 0.987 ( 5.60)Log w Log w= + ⋅        (4.10) 

After transformation, equation 4.10 becomes: 

0.161 0.9875.30 10 5.60w w= ⋅          (4.11) 

75.4 % relative humidity is easily achieved by NaCl solution, so moisture content at 75.4 % RH 

can be used to predict unmeasured moisture contents in the hygroscopic range. The coefficients 

of regression models based on w7.59 (75.4 %) are summarized in Table 4.2.  

Table 4.2 Coefficients of regression models based on w7.59 (75.4%) in the building brick category 

 constant Log(w7.59(75.4 %)) R2 

Log(w6.56(97.4 %)) 1.102 1.288 0.846(Ro) 

Log(w6.75(96.0 %)) 0.747 1.199 0.861(Ro) 

Log(w7.16(90.0 %)) 0.196 1.029 0.956 

Log(w7.36(84.7 %)) 0.249 1.075 0.974(Ro) 

Log(w7.87(58.2 %)) -0.464 0.848 0.953(Ro) 

Log(w8.06(43.2 %)) -0.824 0.748 0.831 

Log(w8.18(32.9 %)) -0.915 0.749 0.693 

With the values of capillary saturation moisture content, water absorption coefficient, and open 

porosity, moisture contents of building bricks in the over hygroscopic range can be derived by 

these three parameters. The regression coefficients are listed in Table 4.3 [18]. The relationships 

between them provide a possibility to quickly estimate moisture storage data without any 

moisture measurement.  
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For instance, moisture contents w3.48, w4.48, and w5.60 can be estimated by the following 

equations. 

3 .4 8 0 .0 3 6 5 1 .1 6 3 ca pw θ= + ⋅             (4.12) 

4 .4 8 0 .0 5 6 1 .4 7 2 0 .2 6 7ca p ww Aθ= − + ⋅ − ⋅       (4.13) 

0.5 0.55.60 5.930 9.945 2.752por wLogw Aθ=− + ⋅ − ⋅       (4.14) 

After transformation, equation 4.14 becomes: 
0 .5 0 .55 .9 3 0 9 .9 4 5 2 .7 5 25 .6 0 1 0 wp o r A

w
θ− + ⋅ − ⋅=        (4.15) 

Table 4.3 Coefficients of regression models based on basic material parameters in the building 

brick category. 

 constant θcap Aw R2 

w0 0.056 1.108 - 0.936 

w3.48 0.0365 1.163 - 0.919 

w3.78 0.017 1.210 - 0.894 

w4.18 -0.029 1.312 - 0.880 

w4.48 -0.056 1.472 -0.267 0.883(Ro) 

w4.78 -0.100 1.655 -0.369 0.864(Ro) 

w4.95 -0.134 1.805 -0.516 0.864(Ro) 

w5.30 -0.090 1.439 -0.640 0.877 

 constant θpor
 0.5 Aw

0.5 R2 

Log(w5.60) -5.930 9.945 -2.752 0.803(Ro) 

Log(w5.90) -5.782 9.580 -2.760 0.858(Ro) 

Log(w6.15) -5.788 9.542 -2.845 0.870 
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4.3 Germany [IBP]: Window opening 

4.3.1 Literature Background 

There has been an extensive literature research regarding manual window opening carried out 

by C. Mayer which can be summarised as follows: 

• The main influencing factor on user behaviour is the temperature. However, there are 

different opinions on whether the indoor or outdoor temperature is more significant. 

• Most research relating to user behaviour has been done for office buildings. Manual 

window openings in residential buildings have not been investigated thoroughly yet. 

• The occupancy does play an important role 

• Disparities in user behaviour between different climate regions have not been analysed 

• For the modelling of the user behaviour various mathematical methods have been used. 

Those are logistic regression, Markov-Chains and survival analysis. 

• The angle of the window opening has not been considered yet 

4.3.2 Influencing Parameter 

4.3.2.1 Building, room type and size 

Current research suggests that the type of the building has a significant influence on the window 

opening behaviour. For instance, the occupancy of residential buildings and offices are 

completely dissimilar, while activities like cooking or showering require other air flow rates than 

common office work. In general, the user behaviour in residential buildings tends to be more 

complex, as a substantial room dependency can be found (Figure 4.3). 

 

Figure 4.3 Mean Window opening duration over room type. 
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Rooms like kitchen, bathroom and bedrooms are differently ventilated and the occupancy and 

user behaviour are more difficult to predict. 

Moreover, the average occupancy (treated floor area per inhabitant) seems to have a 

correlation to the window opening duration (Figure 4.4). 

 

Figure 4.4 C Mean Window opening duration over average occupancy. 

4.3.2.2 Building envelope, air tightness 

Thermal insulation and air tightness don’t have a direct influence on manual window opening 

behaviour (Figure 4.5). Nevertheless, the better the building envelope standard and air 

tightness, the greater the influence of the windows opening to the overall energy losses. 

 

Figure 4.5 Mean window opening duration over air tightness (blower door test at 50 Pa). 

n50 
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4.3.2.3 Outdoor / indoor temperature 

The outdoor temperature is one of the main influencing parameter to the user behaviour. 

Generally, the greater the difference between indoor and outdoor temperature at cold periods, 

the shorter the opening duration is. The opposite is true for the summer period (>28 °C), when 

warm outdoor temperature heats up the indoor climate (Figure 4.6) 

 

Figure 4.6 Correlation between window opening and outdoor temperature. 

Accordingly, the indoor temperature correlates with the window opening duration as well. Up 

to 23 °C there is no relation while exceeding 23 °C results in longer opening durations until 28 °C 

when the outdoor climate conditions heat up the indoor climate too much (Figure 4.7). 

 

Figure 4.7 Correlation between window opening and indoor temperature. 
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4.3.2.4 Other outdoor climate parameters 

Former researches suggest that there is no correlation between window opening and wind 

speed up to 6 m/sec. In Germany, 80 % of the year there is less wind speed than 6 m/sec, hence 

wind speed is not regarded as an important factor. In addition, local site conditions can have 

great impact to the wind speed and angle which should be considered in the climate file for the 

simulation, nevertheless those are hard to determine. Analysis of the investigated building 

doesn’t show any correlation at all (Figure 4.8). The same applies for rain direction (graph not 

shown here). 

Figure 4.8 Correlation between window 

opening and wind speed. 

Figure 4.9 Correlation between window 

opening and solar radiation. 

In contrast to wind speed, the solar radiation shows a significant correlation to manual window 

opening (Figure 4.9). Increased solar radiation results in increased window opening duration. As 

a matter of course this correlation is only viable during daytime when daylight is available. 

4.3.2.5 Mechanical Ventilation 

In literature there is a disagreement if mechanical ventilation has impact on the manual window 

opening behaviour. The analysis of the current dataset does not support such thesis, although 

there haven’t been enough buildings without mechanical ventilation available to make a reliable 

conclusion (Figure 4.10). 
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Figure 4.10 Buildings with mechanical ventilation and without. 

4.3.2.6 Time of the day and user preferences 

The user behaviour also depends on the daytime (Figure 4.11) and personal preferences (Figure 

4.12 and Figure 4.13). For instance, some people like to keep the window open during night and 

some people are more sensitive to the indoor climate comfort. 

 

Figure 4.11 Day profiles of window opening for different room types. 
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Figure 4.12 Window opening user profiles 

categorised in continuous, day and night 

ventilation for the living room. 

 

Figure 4.13 Window opening user profiles 

categorised in continuous, day and night 

ventilation for the sleeping room. 

In Figure 4.12 and Figure 4.13 average day profiles for all houses are plotted for two different 

room types – living room and sleeping room. There are significant differences between user 

behaviour observed which again depend on the room type. In this case for example, the living 

room tends to be more ventilated during the day (blue), while the sleeping room also has a 

certain tendency for night ventilation (red). However, most of the user ventilate rather constant 

throughout the day (gray). 

4.3.2.7 Other parameters 

Other parameters which have not been investigated could influencing the opening behaviour 

could be external smell and noise disturbance as well as indoor air quality. 

Another important aspect might be the window type (tilting possible?) and the orientation 

(south orientation receives more solar radiation), size and placement (close to the workplace) 

of the windows. 

4.3.3 Modelling Approaches 

Performing a correlation test for the status of the window opening (closed or open) displays a 

significant relation of the current state and its former states. The matrix in Figure 4.14 lists the 

auto-correlation for each time of the day. A correlation coefficient (according to Bravais 

Pearson) of 1 (dark filling) means a total correlation, where 0 (bright filling) indicates no 

correlation at all. The graphic draws the conclusion that the closer the last states of the window 

are, the greater its correlation to the current state. There is a higher correlation during night 

times which is not surprising as it is less likely that the window is opened or closed (=changing 

the current state) during night. 
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Figure 4.14 Window opening correlation matrix for each time of the day. 

4.3.3.1 Markov Chains / Survival / Failure Time Analysis 

Markov Chains are used to simulate transition probabilities. They estimate for each point in time 

the probability that the window state closed-open is changing or not. Inhomogeneous Markov 

Chains are time dependent but do not take other parameters into account. Therefore, this 

approach is only partly suitable for estimating window opening. Another method would be 

Survival / Failure Time Analysis of which only the previous state is relevant and not the former 

progression. 

4.3.3.2 Generalised Linear Models (GLM) / Logistic Regression 

The standard linear models are based on the assumption, that there is a (monotonous) linear 

correlation between the input variables and the output (window opening). GLM enhance the 

standard model by specifying the model by the distribution of the data and the expected value. 

This is done using a linking function which can be constructed in many different ways.  Binomial- 

or Bernoulli distributions are used for independent outcome between 0 and 1 and Poisson 

distribution is used for discrete outcome which can be counted. 

The modelling via logistic regression can be done using a dummy coding (0 = closed, 1 = open). 

Thereby, the window states are considered to be independent which objects the conclusion 

found in the correlation matrix. Like Markov chains, such models cannot describe the time 

dependency of the window states and would result in misleading p-values. 

4.3.3.3 GEE - generalized estimating equations 

GEE is a further development based on the GLM. The distribution of GEE can be binomial, 

poisson or gamma. The main advantage of this approach is that it takes the dependencies of the 

former states into account. Furthermore, it can be used for continuous outcome values, hence, 

the opening duration can also be estimated. To predict the opening probabilities the binominal 

distribution is used, whereas the gamma distribution for the opening duration is applied. 
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4.3.4 GEE Window Opening Model 

The window opening model has been created using the GEE approach to take the auto 

correlation of the measured data into account. The dataset has been randomly divided into two 

parts; one is used for building the model and one for its validation. 

To determine the most important input parameters for the model, a step-by-step approach has 

been used. The procedure starts with the parameter with the smallest p-value of the significance 

test followed by the parameter with the second smallest p-value and so on. At each step the 

model has to be checked if all including factors together are still considered to be significant.  

This approach estimates the following parameter as significant for the opening probability:  

• Outdoor temperature 

• Outdoor relative humidity 

• Indoor temperature (of the hour before) 

• Time of the day 

• Room type 

Those are the co-variables used in the GEE model. 

The final model for the opening probability µ is specified as follows: 

A � ��U.VW Y Z.UZ[\ YZ.ZZV]^\_ Z.ZV`[aY Z.ZUU[bY Z.cdVe]Y Z.fUVg]Y Z,`Wh] �
�"��U.VW Y Z.UZ[\ YZ.ZZV]^\_ Z.ZV`[aY Z.ZUU[bY Z.cdVe]Y Z.fUVg]Y Z,`Wh] �  (4.16) 

where 

Te  =  external temperature 

RHe = external relative humidity 

Ti  = indoor temperature 

TD = time of the day 

LR = living room, BR = bathroom, SR = sleeping room 

If for example the opening probability for a bathroom should be predicted, BR is set to 1, 

whereas LR and SR are set to 0. 

The validation of the model shows a good accordance of the predicted values and the validation 

dataset. Figure 4.15 displays the predicted values (green) over the measured values (purple). 

The values have been clustered into 50 equal classes sorted by their mean values. 
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Figure 4.15 GEE model validation for window opening probability. 

The same procedure for the opening duration estimates the following co-variables as significant: 

• Outdoor temperature 

• Outdoor relative humidity 

• Indoor temperature (of the hour before) 

• Wind speed 

• Room type 

Resulting in the following model: 

μ � @�j.�	"	�.��klm�.#$kn"	�.��$oplm	�.�#qr"	�.�stom	�.#uvo"	�.'uro	� (4.17) 

where 

Te  =  external temperature 

RHe = external relative humidity 

Ti  = indoor temperature 

WS = wind speed 

LR = living room, BR = bathroom, SR = sleeping room 

 

The lift plot indicates a good correspondence for durations up to 20min/hr (Figure 4.16). 
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Figure 4.16 GEE model validation for window opening duration. 
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4.4 The Netherlands [TUE] - Statistical 

modelling of the UHI of Rotterdam 

A neural network was trained in order to derive a data-driven model of the UHI intensity in 

Rotterdam.  This model included the same weather parameters as described by [39] to 

determine the UHI intensity, meaning that wind speed, temperature, relative humidity, global 

horizontal irradiance and cloud cover were taken into account. In addition to these parameters 

the hour of the day, wind direction and solar elevation were added. The hour of the day was 

added based on its usage in existing time-based models [34] [87]. 

The hour of the day was also used as a UHI predictor in a neural network as reported by [35]. 

The hour of the day might be used by the network for accounting for the changing anthropogenic 

heat production over a day. The solar elevation was added to account for the effect of seasonal 

variation, which can potentially be learned by the trend in variation of the solar elevation over 

a year. Note that [35] used the date to account for the seasonal variation. Network A in Figure 

4.17 shows the mean squared error (MSE) of the neural network that was trained with five 

weather parameters to determine the UHI intensity.  

 

Figure 4.17 Mean squared error on test data, validation data and training data of four different 

neural networks.  

Network A is trained with five UHI determining weather parameters, 17 neurons in the hidden 

layer, the training function was scaled conjugate gradient back propagation. Network B is 

trained with eight parameters, 17 neurons in the hidden layer and scaled conjugate gradient 

back propagation as training function. Network C is trained with eight parameters, 20 neurons 

in the hidden layer and Levenberg-Marquardt back propagation. Network D is trained with eight 

parameters for the hour in question as well as the preceding three hours, 20 neurons in the 

hidden layer and Levenberg-Marquardt back propagation as training function. 

The improvement of the network performance by adding the parameters as described above is 

visible by comparing network A with network B. The addition of the parameters resulted in a 

change in the MSE on the validation data and test data of -26 % and -25 % respectively. A re-

analysis of eight different training functions as well as nine different network architectures 
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resulted in a network with a lower MSE (network C in Figure 4.17). This network consisted of 20 

neurons in the hidden layer with Levenberg-Marquardt back propagation as training function. 

The MSE with network C changed with -36 % and -28 % for the validation data and test data 

respectively when compared to network A. [52] used the maximum UHI intensity of the previous 

day as one of the predictors in a data driven models based on a multiple linear regression 

analysis. In this study the eight weather parameters of the preceding three hours are used in an 

addition to the weather parameters as described above, which to the best of our knowledge has 

not been done before to predict the UHI intensity. For the network training a reanalysis of the 

network architecture and training function was performed, the network with the lowest MSE on 

the validation data is shown a variant D in Figure 4.17. This network consisted of 20 neurons in 

the hidden layer with Levenberg-Marquardt back-propagation as training function. The MSE 

with network D changed with -65 % and -58 % for the validation data and test data respectively 

when compared to network A. The addition of the UHI intensity predictors of the previous hours 

therefore improved the neural network performance. A comparison was made between the 

measured temperature in the urban area and the urban modelled temperature as well as the 

measured rural temperature. Based on this comparison the advantage of using a model of the 

UHI can be shown. Figure 4.18(a) shows the rural, urban and urban modelled temperature of 

five continues days with a typical UHI are shown. The results show that the model reproduces 

the trend and intensity of the UHI in an accurate manner. Figure 4.18(b) shows the predicted 

UHI intensity for five days, in which there was a non-typical diurnal variation of the UHI. The 

results indicate that the neural network is accurate for this period as well.  

 

Figure 4.18 Measured en modelled urban temperature. (a) Shows the perdiction of the UHI for 

five days with a typical diurnal variation. (b) Shows the predicton during a period with a minimal 

UHI intensity.   
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In order to indicate the model accuracy over the whole period the regression coefficient was 

determined for both the case in which the modelled urban temperature and the rural 

temperature are used to represent the urban temperature, note that the latter is the commonly 

used method in building energy simulations. The adjusted coefficient of determination (R2) for 

the neural network and the rural data are 0.996 and 0.980 respectively, therefore a stronger 

relation was found for the modelled urban temperature. The regression line on the data of the 

neural network is shifted 0.04 °C from the exact solution, and therefore shows a close fit to the 

measured data. Figure 4.19 shows the regression analysis. It can be seen that that there is a 

close agreement between the estimated urban temperature and the measured urban 

temperature.  

 

Figure 4.19 Comparison between the rural temperature, urban temperature and the modelled 

urban temperature. 

The preceding section provided a systematic analysis on how to convert rural temperatures to 

urban temperatures by the use of a neural network. While the study has provided several new 

insights, it is also important to mention the limitations of this study: 

• The applicability of the developed neural network is limited to prediction the UHI of 

Rotterdam; 

• The study is based on the average UHI of Rotterdam, which was based on the 

measurements at five locations. 

In spite of these shortcomings, the present study has provided new and valuable insights. It has 

been shown that the artificial neural network approach as first described by [50] and later by 

[51] [52] [39] and [35] does provide reliable results for the prediction of the UHI intensity of 

Rotterdam as well. Moreover, it has been shown that the addition of UHI determining 

parameters of the hours before the hour in question significantly improved the neural network 

performance (decrease in mean squared error of 65 % on validation data). This also indicates 

that the UHI intensity at a certain time is a result of the weather determining parameters at that 

time, as well as the previous hours.  
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5.1 Introduction 

The fifth chapter addresses energy consumption data, presenting examples that can be used for 

validation of stochastic methodologies, applying the input data presented in section 3. 

The consumption on electricity, gas, water and heating in buildings with different construction 

solutions were recorded as well as correlation between air change rates, living area dimensions 

and energy consumption were analyzed. 
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5.2 Estonia [TTU] – Energy use in 

Estonian Buildings 

5.2.1 Electricity 

The average annual use of electricity (lighting, household electricity and space heating in same 

cases) in brick apartment buildings was 35 kWh/(m2·a) (22–49 kWh/(m2·a)). In wooden 

apartment buildings the use of electricity was larger, 58 kWh/(m2·a) (26–103 kWh/(m2·a)), due 

to use of electricity for heating of domestic hot water and partially for  space heating. The 

percentage of electricity use in apartments (from the total use of electricity) was 80–98 % in 

brick apartment buildings and 93−99 % in wooden apartment buildings. The average annual and 

monthly use of electricity in brick and wooden apartments is presented in Figure 5. 1 and Figure 

5.2 respectively.  

The use of electricity changed +15–-28 % from annual average in brick apartment buildings and 

+27–-44 % in wooden apartment buildings, mainly due to lower use of lighting.  

  

Figure 5. 1The average annual use of electricity in brick apartment buildings (left, district heating 

for space heating) and in wooden apartment buildings (right).  

  

Figure 5.2 The monthly use of electricity in brick apartment buildings (left) and in wooden 

apartment buildings (right). 
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5.2.2 Gas 

The annual average use of gas for cooking was 0.5 m3/(m2·a) (st. dev. 0.34  m3/(m2·a) and for 

cooking and heating of domestic hot water 3 m3/(m2·a) (st. dev. 1.0 m3/(m2·a)) in brick 

apartment buildings, Figure 5.3. In buildings where gas was used for cooking, for heating of 

domestic hot water and for space heating (SH), the annual average use of gas was 26 m3/(m2·a) 

in brick apartments buildings and 14.6 m3/(m2·a) (st. dev. 9.7 m3/(m2·a) in wooden apartment 

buildings. 

  

Figure 5.3 The average annual use of gas (m3/(m2·a): left and kWh/(m2·a):right) in brick 

apartment buildings and in wooden apartment buildings. 

5.2.3 Water 

The annual average daily overall (hot and cold) water use was 3 l/(m2·d) (st. dev. 0.6 l/(m2·d)) 

and 202 l/(apartm.·d) (st. dev. 64 l/(apartm.d)) in brick apartment buildings, and 2.8 l/(m2·d) 

(st. dev. 0.9 l/(m2·d)) and 149 l/(apartm.·d) (st. dev. 109 l/(apartm.·d)) in wooden apartment 

buildings. The use of water was similar over the entire year; monthly average use of water was 

also similar. The percentage of domestic hot water from overall water use was 40 % on average. 

The average daily use of water in brick and wooden apartments is presented in Figure 5.4 

andFigure 5.5 respectively. 

  

Figure 5.4 The daily average overall (hot and cold) water use in brick apartment buildings. 
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Figure 5.5 The daily average overall (hot and cold) water use in wooden apartment buildings. 

The use of domestic hot water (DHW) was 35 l/(person·d) (st. dev. 10 l/(person·d)) in brick 

apartment buildings and 30 l/(person·d) (st. dev. 9 l/(in·d)), in wooden apartment buildings, see 

Figure 5.6.  

Figure 5.6 The daily average us of domestic hot water in brick apartment buildings (left) and 

wooden apartment buildings (right). 

The use of DHW has decreased from 1990 almost twice, see Table 5.1 (mainly due to 

measurement of water use and higher energy prices). 

Table 5.1 The personal use of domestic hot water in apartment buildings during 1999-2010. 

 Kõiv & Toode 2005 

(75 apartment buildings) 

Brick 

apartment 

buildings 

Wooden 

apartment 

buildings 

 1999 2000 2001 2002 2003 2004 2009 2010 

 Use of domestic hot water, l/(m2·d) 

Average 2.8 2.6 2.3 2.2 2.1 2.0 1.3 1.1 

Range 1.6…3.6 2.1…3.3 1.8…3.1 1.7…2.8 1.6…2.6 1.7…2.7 0.7…1.8 0.5…2.0 

 Use of domestic hot water, l/(person·d) 

Average 60 56 49 46 45 44 35 30 

Range 34…77 44…71 38…66 37…59 35…56 36…58 17…58 15…50 
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5.2.4 Space heating 

The energy used for space heating was analysed in brick apartment buildings with district 

heating. This energy should cover: 

• heat losses through building envelope, 

• heat loss through thermal bridges, 

• heat loss due to infiltration, 

• heat loss due to natural ventilation. 

The measured energy from different locations and from different years was reduced based on 

heating degree days at a balanced temperature of +17 °C. The average energy use for space 

heating was 150 kWh/(m2·a) (st. dev. 41 kWh/(m2·a)). The heating energy use was larger in 

buildings with one pipe heat distribution system (complicated balance and temperature 

regulation) and in buildings with larger compactness (Figure 5.7). 

  

Figure 5.7 Energy use for space heating in brick apartment buildings depending on heat 

distribution system (left) and compactness of building (right). 

5.2.5 Overall primary energy consumption 

The overall primary energy consumption represents energy need in a building for space heating, 

ventilation, domestic hot water, lighting and appliances and is presented as the energy 

performance value (EPV). The EPV is calculated from delivered energy use with energy carrier 

factors: 

• Wood, wood-based fuels, and other bio fuels: 0.75; 

• District heating: 0.9; 

• Fossil fuel (gas, coal etc.): 1.0; 

• Electricity: 1.5 (changed to 2.0 in 2012). 

The average energy performance value in brick apartment buildings was 238 kWh/(m2·a) 

(st. dev. 48 kWh/(m2·a)), see Figure 5.8. 

0

50

100

150

200

250

300

41
50

31
30

12
40

21
50

21
10

11
20

31
40

31
20

12
50

12
30

41
60

41
20

41
30

41
10

41
40

12
20

21
20

21
40

11
70

12
10

11
50

11
60

11
40

11
10

12
00

11
90

Building

S
pa

ce
 h

ea
tin

g,
 k

W
h/

(m
•

2 a)

Min Maks Average

1-pipe system.
average 153 kWh/(m2•a)

2-pipe system.
average 146 kWh/(m2•a)

Min.  Max.

R2 = 0.38

0

50

100

150

200

250

300

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Envelope area / volume, m -1

S
pa

ce
 h

ea
tin

g,
 k

W
h/

(m
2 •a

)

One building



Annex 55 RAP-Retro  172 Subtask 1: Stochastic data 

 

Figure 5.8 Energy performance value in brick apartment buildings. 

In buildings without gas: 62 % was used for space heating, 13 %for domestic hot water  and 25 % 

from electricity weighted delivered energy, Figure 5.9. 

Figure 5.9 The structure (left) and percentage distribution (right) of energy performance value in 

brick apartment buildings. 
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5.3 Finland [TUT] – Energy use in 

Finnish buildings 

5.3.1 Building air tightness 

The results from building air tightness measurements and user questionnaires were further 

analysed. Figure 5.10 shows results of the total delivered energy consumption per ventilated 

floor area against the measured n50-value. 

 

Figure 5.10 Heating degree day -normalized (to 4097 Kd) delivered energy consumption versus 

building n50-value in Finnish heavyweight detached houses. Delivered energy consumption data 

from the years 2004-2005 was gathered with user questionnaires. 

The values include sources for large variations e.g. different heat production systems and user 

behaviour. The corresponding polynomial coefficient in timber-framed detached houses was 

4.202 kWh/(m2a) / (1 h-1). 

The regression result is evaluated by comparing it to simple hand calculations: using a simple 

approximate method to calculate the space heating energy demand for air infiltration, we get 

Qinfiltration = ρacpa(n50/x)VventilatedΔTΔt = 1.25 kg/m3 · 1000 J/(kgK) · (1 h-1 / 25) · 2.5 m3/m2 · 16 K · 

8760 hr = 4.867 kWh/(m2a). The result is of the same order of magnitude than the result from 

the regression analysis. Simplifying even further and by assuming few more generic input values 

we get: 5 kWh/(m2a) · 100 m2 · 0.10 eur/kWh = 50 eur/a. Decreasing building air tightness value 

by 2 h-1would roughly mean financial savings of 1000 euro in ten years through reduced heating 

costs. 

Improved building air tightness has also other important benefits e.g. improved moisture-safety, 

reduced transport of microbes from outside, better heat recovery system efficiency (if installed) 

and reduced draft. Arranging proper ventilation is a prerequisite for good indoor air in all cases. 
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5.3.2 Size of the living area 

Figure 5.11 shows a correlation between energy consumption and living area. The values include 

e.g. many different heat production systems and different user behaviour patterns. 

 

Figure 5.11 Smaller delivered energy consumption per person correlates with smaller living area 

per person. The median value for the number of residents is four. 

The regression line for heavyweight detached houses was: 96.8*<m2/(person*year)>+2458 (the 

result is in [kWh/(person*year]). The median value of for the number of residents is the same 

as for the timber-framed detached houses. The data could be further divided into subgroups to 

compare different design solutions. 

If we assume an energy consumption reduction of 100 kWh/(m2*year), a living space reduction 

of 10 m2/person and an energy price of 0.10 eur/kWh, the annual savings in delivered energy 

would be 100 eur/(person*year). The size of the building and the room plan also depend on e.g. 

the current and future usage and aesthetic values. 

5.3.3 Heat production method 

The heating degree day –normalized delivered energy consumption was divided with the 

ventilated floor area and arranged into subgroups according to the heat production method. 

The results are presented in Table 5.2. 
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Table 5.2 The average, standard deviation and sample size of delivered energy per ventilated 

floor area in Finnish detached houses. The energy consumption values are from years 2002-2003 

(timber-frame detached houses) and 2004-2005 (heavyweight detached houses). The delivered 

energy is normalized to heating degree days of 4097 Kd, with indoor temperature 17 °C. 

 

Heat 

production 

system 

Average delivered 

energy 

[ kWh/(m2*year)] 

Delivered energy 

standard deviation 

[kWh/(m2*year)] 

Sample size 

Heavyweight 

detached 

houses 

Ground 

source heat 

pump 

102.8 50.6 15 

Electricity 171.3 52.9 24 

Oil 174.2 49.2 6 

Timber-

framed 

detached 

houses 

Ground 

source heat 

pump 

112.2 24.6 4 

Electricity 166.6 58.3 66 

Oil 147.8 61.0 14 

 

The use of wood for space heating is included in the delivered energy, but is not analysed 

further. The standard deviation in delivered energy per ventilated floor area is close to 50 

kWh/(m2*year) in all the cases. 
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5.4 United Kingdom [UCL] – Energy use 

in the Warm Front study 

5.4.1 Collected raw data 

A total of 2901 sets of data (1255 pre-intervention, 1162 post-intervention and 242 both pre- 

and post-intervention) were collected from a subset of 2659 dwellings. However, as the post-

processing of these data use the measured indoor and outdoor temperatures, data 

corresponding to the same sample of 1481 dwellings as presented on 3.4.8 will be shown here. 

Again, the data are cleaned of repeat measurements, and if both pre- and post-intervention 

measurements exist for the same dwelling, only the pre-intervention measurements are kept so 

that the data represents a single stock. 

5.4.1.1 Total fuel consumption 

The total fuel consumption for each house was recorded over the same 2–4 week period as the 

temperature and relative humidity monitoring presented on 3.4.8, by reading the gas and the 

electric meters each time the data loggers were placed and removed. For a further 100 dwellings 

that granted consent, utility billing data for the  1–2 year period was obtained. 

5.4.1.2 Primary heating fuel and efficiency 

These were recorded during the surveys of the dwellings. 

5.4.2 Analysis 

5.4.2.1 Post-processing of data 

5.4.2.1.1 Normalized space heating fuel consumption (E-value) 

Space heating fuel consumption was normalized to account for the variation in the difference 

between internal and external temperatures, and the ground floor area of the dwelling using 

the following relation: 

E-value �  1 41 w
xxyz       (5.1) 

 

where the E-value is the normalized space heating fuel consumption (W/K/m2), { is the space 

heating fuel consumption derived from the monitored total fuel consumption data, �� is the 

heating degree days calculated over the monitoring period, and �� is the total ground floor area 

(m2) of the dwelling.  

The space heating fuel consumption was not directly monitored due to funding constraints and 

therefore instead estimated by subtracting the summer fuel load from the monitored total fuel 

data collected in winter. The summer fuel load was itself estimated using a regression model 
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derived to predict fuel consumption by non-heating appliances, based on the summer utility 

billing data and also surveyed data on appliance type, their frequency of use, and occupancy. 

More details can be found in [58]. 

The heating degree days, ��, were calculated for each dwelling by summing the temperature 

difference between the daily mean internal base temperature and the daily mean external 

temperature over the 2-4 week monitoring period. More details can be found in [58]. 

A total of 69 dwellings were excluded from further analysis, as a result of very low values for the 

E-value. In many cases, this was due to the primary heating fuel being solid fuel or paraffin, 

broken boilers, suspected vacated dwellings, or overestimation of either the non-heating fuel 

consumption or the heating degree days. 

5.4.3 Stochastic data sets 

Figure 5.12 shows the distribution of E-values, primary heating fuel type, and efficiency of 

primary heating fuel.  
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Figure 5.12 Distribution of E-values (top), primary heating fuel (middle), and primary heating 

efficiency (bottom).  
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6 CONCLUSIONS 
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6.1 Final Remarks 

This report was built on data previously collected in different projects. A synthesis of the projects 

carried out by each institution was presented and details from the developed experimental 

campaigns, were described. 

Input data was presented and divided into the following categories: stochastic material data, 

ventilation and airtightness, indoor loads and weather. Different codes may require different 

sets of stochastic data, which means that these cannot be considered ready to use stochastic 

sets but rather a base for each practitioner to build his required set of input data. 

Each subchapter was arranged so that each set of collected raw data is introduced. The analysis 

to derive statistical distributions that was performed on the raw data was explained and the 

final stochastic data sets are presented. The focus was put on ensuring that the connection to 

measured data wouldn’t be lost. 

Synthetic data sets were included, demonstrating how additional sets of valuable information 

can be prepared with more advanced analysis. The examples included: extrapolation of material 

properties, determination of window opening behaviour and UHI intensity determination. 

Energy consumption data, presenting examples that can be used for validation of stochastic 

methodologies, applying the input data presented in section 3, is also presented. The 

consumption on electricity, gas, water and heating in buildings with different construction 

solutions were recorded as well as correlation between air change rates, living area dimensions 

and energy consumption were analyzed. 

The effort of the participating teams also allowed gathering extensive electronic raw data files 

that can be made available by the operating agent upon request. Those files include the 

following information: 

• Belgium: [KUL] Airtightness data; 

• Canada: [BCIT] Indoor Temperature and Humidity Summary Data; 

• Estonia: [TUT] Indoor Temperature and Relative Humidity Data; 

• Finland: [TTU] Finnish data on timber framed houses; 

• Finland: [TTU] Finnish data on detached houses and apartments; 

• Germany: [TUD] Material summary sheet template; 

• The Netherlands: [TUE] Temperature and UHI data; 

• Portugal: [UP] Airtightness data; 

• Sweden: [SP] Airtightness data; 

• Sweden: [LTH] Climate Sweden; 

• United Kingdom: [UCL] Indoor climate and energy 

 

 

 



Annex 55 RAP-Retro  182 Subtask 1: Stochastic data 

 

7 REFERENCES 
 

  



Annex 55 RAP-Retro  183 Subtask 1: Stochastic data 

[1] EN ISO 13829 (2001). Thermal performance of buildings. Determination of air permeability 

of buildings. Fan pressurization method. CEN. Brussels 

[2] Arumägi, E.; Kalamees, T. (2014). Analysis of energy economic renovation for historic wooden 
apartment buildings in cold climates. Applied Energy, 115, 540 - 548. 

[3] Kuusk, K.; Kalamees, T.; Maivel, M. (2014). Cost effectiveness of energy performance 

improvements in Estonian brick apartment buildings. Energy and Buildings, 77, 313 - 322. 

[4] Vinha, J., Korpi, M., Kalamees, T., Eskola, L., Palonen, J., Kurnitski, J., Valovirta, I., Mikkilä, A. 

& Jokisalo, J. (2005) Moisture and temperature conditions, ventilation and air tightness in timber 

framed one family houses. Research report 131. 102 p. + app. 10 p. Tampere University of 

Technology. Department of Civil Engineering. Structural Engineering Laboratory. Tampere. 

Finland. ISBN 978-952-15-2747-0. Publication in Finnish. 

[5] Vinha, J., Korpi, M., Kalamees, T., Jokisalo, J., Eskola, L., Palonen, J., Kurnitski, J., Aho, H., 

Salminen, M., Salminen, K. & Keto, M. (2009) Air tightness, indoor climate and energy economy 
of detached houses and apartments.Research report 140. 148 p. + app. 19 p. Tampere University 

of Technology. Department of Civil Engineering. Structural Engineering Laboratory. Tampere. 

Finland. ISBN 978-952-15-2738-8. Publication in Finnish, English abstract included. 

[6] ISO 11272:2001. Soil quality - Determination of dry bulk density  

[7] ASTM C177 (2010). Standard Test Method for Steady-State Heat Flux Measurements and 

Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. 

[8] ASTM C518 (2010). Standard Test Method for Steady-State Thermal Transmission Properties 

by Means of the Heat Flow Meter Apparatus 

[9] DIN EN 12664 (2001). Thermal performance of building materials and products - 

Determination of thermal resistance by means of guarded hot plate and heat flow meter 
methods - Dry and moist products with medium and low thermal resistance. 

[10] ASTM E1269 (2011). Standard Test Method for Determining Specific Heat Capacity by 

Differential Scanning Calorimetry 

[11] ASTM C1498 (2004). Standard Test Method for Hygroscopic Sorption Isotherms of Building 

Materials 

[12] DIN EN ISO 12571 (2000). ISO 12571:2000 Hygrothermal performance of building materials 

and products. Determination of hygroscopic properties 

[13] ASTM C1699 (2009). Standard Test Method for Moisture Retention Curves of Porous 

Building Materials Using Pressure Plates 

[14] ASTM E96 /E96M (2010). Standard Test Methods for Water Vapor Transmission of Materials 

[15] ISO 12572:2001 Hygrothermal performance of building materials and products. 

Determination of water vapour transmission properties. 

[16] ISO 15148 (2003). Hygrothermal performance of building materials and products - 

Determination of water absorption coefficient by partial immersion (ISO 15148:2003) 

[17] Plagge, R., Scheffler, G. and Nicolai, A. 2007. Experimental Methods to Derive Hygrothermal 

Material Functions for Numerical Simulation Tools, Buildings X Proceedings, Clearwater Beach, 

Florida. 



Annex 55 RAP-Retro  184 Subtask 1: Stochastic data 

[18] Zhao, J. 2012. Development of a Novel Statistical Method and Procedure for Material 

Characterization and a Probabilistic Approach to Assessing the Hygrothermal Performance of 

Building Enclosure Assemblies. Ph.D. Dissertation. Syracuse University, USA, pp.298 

[19] Howard, L., 1833. Climate of London deduced from meteorological observations. 3rd ed. 

London: Harvey & Darton. 

[20] Mills, G. 2003. Luke Howard and the Climate of London. Weather, Vol.63, no.6, pp.153–157. 

[21] Oke, T. R. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal 

Meteorological Society, Vol. 108, no. 455, pp.1–24. 

[22] Oke T. R. 1987. Boundary layer climates. Methuen Co. NY, London, pp.1-435 

[23] Taha, H. 1997. Urban climates and heat islands: albedo, evapotranspiration, and 

anthropogenic heat. Energy and Buildings, Vol. 25, No. 2, pp. 99–103. 

[24] Santamouris M. 2001. Energy and climate in the urban built environment. London: James 

and James; 2001. 

[25] Santamouris, M. 2007. Heat island research in Europe: The state of the art. Advances in 

building energy research, Vol. 1, pp. 123–150. 

[26] Kolokotroni, M., Davies, M., Croxford, B., Bhuiyan, S., & Mavrogianni, A. 2010. A validated 

methodology for the prediction of heating and cooling energy demand for buildings within the 

Urban Heat Island: Case-study of London. Solar Energy, Vol. 84, No. 12, pp. 2246–2255. 

[27] Stewart, I. D. 2011. A systematic review and scientific critique of methodology in modern 

urban heat island literature. International Journal of Climatology, Vol. 31, No. 2, pp. 200–217. 

[28] Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. J. 2011. Including the urban heat 

island in spatial heat health risk assessment strategies: a case study for Birmingham, UK. 

International journal of health geographics, Vol. 10, no. 1, pp. 42. 

[29] Mavrogianni, A., Davies, M., Batty, M., Belcher, S., Bohnenstengel, S., Carruthers, D., 

Chalabi, Z., et al. (2011). The comfort, energy and health implications of London’s urban heat 

island. Building Services Engineering Research and Technology, Vol. 32, No. 1, pp. 35–52. 

[30] Gosling, S. N., Lowe, J. A., McGregor, G. R., Pelling, M., & Malamud, B. D. 2008. Associations 

between elevated atmospheric temperature and human mortality: a critical review of the 

literature. Climatic Change, Vol. 92, No. 3-4, pp. 299–341. 

[31] Pirard, P., Van den torren, S., Pascal, M., Laaidi, K, Le Tertre, A., Cassadou, S., Ledrans, M., 

2005, Summary of the mortality impact assessment of the 2003 heat wave in France, Euro 

Surveillance 2005, Vol 10, No. 7, pp. 153–6 

[32] Brücker, G., 2005, Vulnerable populations: Lessons learnt from the summer 2003 heat 

waves in Europe. Eurosurveillance, Vol. 10, no. 7, pp. 147. 

[33] Kosatsky, T., 2005, The 2003 European heatwave, Eurosurveillance, Vol. 10, no. 7, pp. 148-

149 

[34] Kershaw, T., Sanderson, M., Coley, D., & Eames, M., 2010. Estimation of the urban heat 

island for UK climate change projections. Building Services Engineering Research and 

Technology, Vol. 31, No. 3, pp. 251–263. 

[35] Gobakis, K., Kolokotsa, D., Synnefa, a., Saliari, M., Giannopoulou, K., & Santamouris, M. 

2011. Development of a model for urban heat islandprediction using neural network techniques. 

Sustainable Cities and Society, Vol. 1, No. 2, pp. 104–115. 



Annex 55 RAP-Retro  185 Subtask 1: Stochastic data 

[36] Assimakopoulos, M. N., Mihalakakou, G., & Flocas, H. a. 2007. Simulating the thermal 

Behaviour of a building during summer period in the urban environment. Renewable Energy, 

Vol. 32, No. 11, pp. 1805–1816. 

[37] Hassid, S., & Santamouris, M. 2000. The effect of the Athens heat island on air conditioning 

load. Energy and Buildings, Vol, 32, pp. 131–141. 

[38] Wilbanks, T.J., P. Romero Lankao, M. Bao, F. Berkhout, S. Cairncross, J.-P. Ceron, M. Kapshe, 

R. Muir-Wood and R. Zapata-Marti, 2007: Industry, settlement and society. Climate Change 

2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth 

Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, 

J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, 

UK, 357-390. 

[39] Kolokotroni, M., Zhang, Y., & Watkins, R., 2007.The London Heat Island and building cooling 

design. Solar Energy, Vol. 81, No. 1, pp. 102–110. 

[40] Kolokotroni, M., Davies, M., Croxford, B., Bhuiyan, S., & Mavrogianni, A. 2010. A validated 

methodology for the prediction of heating and cooling energy demand for buildings within the 

Urban Heat Island: Case-study of London. Solar Energy, Vol. 84, No. 12, pp. 2246–2255. 

[41] Taha, H. 1999. Modifying a mesoscale meteorological model to better incorpórate urban 

heat storage: A bulk-parameterization approach. Journal of Applied Meteorology, Vol 38, pp. 

466–473. 

[42] Bueno, B., Norford, L., Hidalgo, J., Pigeon, G., 2012. The urban weather generator, journal 

of Building Performance Simulation, DOI:10.1080/19401493.2012.718797 

[43] Runnalls, K., Oke, T. 2000. Dynamics and controls of the near-surface heat island of 

Vancouver, British Columbia. Physical Geography. Vol. 21, pp. 283-304 

[44] Erell, E., Williamson, T. 2006. Simulating air temperature in an urban street canyon in all 

weather conditions using measured data at a reference meteorological station. International 

Journal of Climatology, Vol. 26, No.12, pp.1671–1694 

[45] Levermore, G., Cheung, H. 2012. A low-order canyon model to estimate the influence of 

canyon shape on the maximum urban heat island effect. Building Services Engineering Research 

and Technology, Vol. 33, No. 4, pp. 371–385. 

[46] Bouyer, J., Inard, C., Musy, M. 2011. Microclimatic coupling as a solution to improve building 

energy simulation in an urban context. Energy and Buildings, Vol. 43, No. 7, pp. 1549–1559. 

[47] Wilby, R. 2003. Past and projected trends in London’s urban heat island. Weather, Vol. 58, 
pp. 251–260. 

[48] Giridharan, R., Lau, S. S. Y., & Ganesan, S., 2005. Nocturnal heat island effect in urban 

residential developments of Hong Kong. Energy and Buildings, Vol. 37, No. 9, pp. 964–971. 

[49] Morris, C., Simmonds, I., 2001. Quantification of the influences of wind and cloud on the 

nocturnal urban heat island of a large city. Journal of Applied Meteorology, Vol. 40, pp. 169–

182. 

[50] Santamouris, M. 2007. Heat island research in Europe: The state of the art. Advances in 

building energy research, Vol. 1, pp. 123–150. 

[51] Mihalakakou, G., Flocas, H. A., Santamouris, M., Helmis, C. 2002. Application of neural 

networks to the simulation of the heat island over Athens, Greece, using synoptic types as a 
predictor. Journal of Applied meteorology, Vol. 41, pp. 519–527. 



Annex 55 RAP-Retro  186 Subtask 1: Stochastic data 

[52] Kim & Baik 2002 Kim, Y.H., Baik, J. 2002. Maximum urban heat island intensity in Seoul. 

Journal of Applied Meteorology, Vol. 41, pp. 651–659. 

[53] Pallin, S. (2012). Probabilistic Risk Assessment of Energy Efficient Retrofitting Techniques - 
Focus on Multi-family Dwellings and the Effects of Changing Air Movements. Licentiate, 

Chalmers University, Gothenburg, Sweden. 

[54] Stein J. (2010). Preliminary Results from Moisture Measurements in a Swedish Multi-family 

Dwelling Retrofitted with Interior Insulation. International Conference on Building Envelope 

Systems and Technologies (ICBEST), Volume 2, pp. 265-274, Vancouver, Canada. 

[55] Levin, P., A. Jidinger, and A. Larsson, (2009). Preliminär objektrapport för Norrbacka-

Sigtunahem: Etapp 1&2. Energimyndighetens beställargrupp för energieffektiva flerbostads-

hus. Unpublished 

[56] Oreszczyn, T., Hong, S., Ridley, I., & Wilkinson, P. (2006). Determinants of winter indoor 

temperatures in low income households in England. Energy & Buildings., 38(3), 245-52. 

[57] Oreszczyn, T., Ridley, I., Hong, S. H., & Wilkinson, P. (2006). Mould and winter indoor relative 

humidity in low income households in England. Indoor built environment, 15(2), 125-35. 

[58] Hong, S. H., Oreszczyn, T., & Ridley, I. (2006). The impact of energy efficient refurbishment 

on the space heating fuel consumption in English dwellings. Energy & Buildings, 38(10), 1171-

1181. 

[59] Hong, S. H., Gilbertson, J., Oreszczyn, T., Green, G., & Ridley, I. (2009). A field study of 

thermal comfort in low-income dwellings in England before and after energy efficient 

refurbishment. Building and Environment, 44(6), 1228-1236. 

[60] Hamilton, I. G., Davies, M., Ridley, I., Oreszczyn, T., Barrett, M., Lowe, R., Hong, S., Wilkinson, 

P., and Chalabi, Z. (2011). The impact of houring energy efficiency improvements on reduced 
exposure to cold – the ‘temperature take back factor’. Building Services Engineering Research 

and Technology, 32(1), 85-98. 

[61] Grunewald, J., P. Häupl, and M. Bomberg. 2003. Towards an Engineering Model of Material 

Characteristics for Input to Ham Transport Simulations - Part 1: An Approach. Journal of Building 

Physics 26 (4):343-366. 

[62] Zhao, J., Grunewald, J. and Plagge, R. 2013. Definition of generic materials by using a cluster 

analysis method. 2nd Central European Symposium on Building Physics, Vienna, Austria, Sept.9-

11, pp 875-881. 

[63] Everitt, B.S., Landau, S., Leese, M. and Stahl, D. 2011. Cluster analysis (5th edition). John 
Wiley & Sons. Chichester, West Sussex. 

[64] ASHRAE. 2009. ASHRAE Handbook of Fundamentals. Atlanta, GA: American Society of 

Heating, Refrigerating and Air-Conditioning Engineers 

[65] Kumaran, M.K. 1996. Final Report, IEA-Annex 24, Task 3: Material Properties, IRC/NRC, 

Canada. 

[66] Kumaran, M.K., J.C. Lackey, N. Normandin, F.Tariku, and D. van Reenen. 2004. Heat, air and 

moisture transport properties of several North American bricks and mortar mixes. Journal of 

Testing and Evaluation,Vol 32, no 5, pp. 383–389 

[67] Bekö G, Lund T, Nors F, Toftum J, Clausen G. Ventilation rates in the bedrooms of 500 Danish 

children. BuildEnviron 2010; 45(10):2289-95. 



Annex 55 RAP-Retro  187 Subtask 1: Stochastic data 

[68] Persily A. Evaluating building IAQ and ventilation with indoor carbon dioxide. ASHRAE Trans; 

1997:193-204.  

[69] ASTM .ASTM Standard D 6245-98 (2002), standard guide for using indoor carbon dioxide 
concentrations to evaluate indoor air quality and ventilation. American Society for Testing and 

Materials; 2002. 

[70] Amstat.org [Internet]. Alexandria, VA: American Statistical Association; c2013 [cited 

2013March11]. Available from: http://www.amstat.org/publications/jse/v13n1/olsson.html 

[71] Appendix A Bekö et al. (2011) The APPENDIX is a (unpublished) conference paper written 

for the Indoor Air 2011 conference held in Austin, Texas 

[72] EN 15251 (2007). Indoor environmental Input Parameters for Design and Assessment of 

Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lightning 

and Acoustics. 

[73] ISO 9972 (1996). Thermal Insulation, Assessment of the airtightness of buildings, Fan 
Pressurization Method, ISO, Geneva. 

[74] Hagentoft, Carl-Eric (2010). Probabilistic analysis of hygrothermal conditions and mould 

growth potential in cold attics. Impact of weather parameters, building systems and 

construction design characteristics. Annex 55 (RAP-RETRO) working paper to Copenhagen 

meeting. Chalmers University of Technology. Gothenburg. Sweden. 

[75] EN ISO 13788 (2001). Hygrothermal performance of building components and building 

elements – Internal surface temperature to avoid critical surface humidity and interstitial 

condensation – Calculation methods. CEN. Brussels. 

[76] Sanders, (1996) Internation Energy Agency Annex 24, Task 2 Environmental conditions 

[77] Arfvidsson, J. (1998) Moisture transport in Porous Media. Modelling Based on Kirchhoff 
Potentials. PhD thesis. Lund University. Sweden. 

[78] Boverket. (2009). Så mår våra hus - redovisning av regeringsuppdrag 

beträffandebyggnaders tekniska utformning m.m. ISBN-nummer: 978-91-86342-29-6, (in 

Swedish). 

[79] Bagge H. (2011). Building Performance - Methods for Improved Prediction and Verification 

of Energy Use and Indoor Climate. Lund University, Building Physics, ISBN 978-91-88722-41-6, 

TVBH-1019. 

[80] Allegrini, J., Dorer, V., & Carmeliet, J. 2012. Influence of the urban microclimate in street 

canyons on the energy demand for space cooling and heating of buildings. Energy and Buildings, 
Vol. 55, pp. 823–832. 

[81] Cooley and Turkey 1965 

[82] Carnahan, W., & Larson, R. 1990. An analysis of an urban heat sink. Remote Sensing of 

Environment, Vol. 33, pp. 65–71. 

[83] Klysik, K., & Fortuniak, K. 1999. Temporal and spatial characteristics of the urban heat island 

of Lodz, Poland. Atmospheric Environment, Vol. 33, pp. 3885–3895. 

[84] Runnalls, K., Oke, T. 2000. Dynamics and controls of the near-surface heat island of 

Vancouver, British Columbia. Physical Geography. Vol. 21, pp. 283-304 

[85] Kalnay, E., Cai, M. 2003. Impact of urbanization and land-use change on climate. Nature, 

Vol. 423, pp. 528–532. 



Annex 55 RAP-Retro  188 Subtask 1: Stochastic data 

[86] Kim, Y., Baik, J. 2005. Spatial and temporal structure of the urban heat island in Seoul. 

Journal of Applied Meteorology, Vol. 44, pp. 591–605. 

[87] Crawley, D. B. 2008. Estimating the impacts of climate change and urbanization on building 
performance. Journal of Building Performance Simulation, Vol. 1, No. 2, pp. 91–115. 

[88] Rizwan, A. M., Dennis, L. Y. C., & Liu, C. 2008. A review on the generation, determination 

and mitigation of Urban Heat Island. Proceedings of BS2013: 13th Conference of International 

Building Performance Simulation Association, Chambéry, France, August 26-28 mitigation of 

Urban Heat Island. Journal of Environmental Sciences, Vol. 20, no. 1, pp. 120–128. 

[89] Steeneveld, G. J., Koopmans, S., Heusinkveld, B. G., van Hove, L. W. a., & Holtslag, a. a. M. 

2011. Quantifying urban heat island effects and human comfort for cities of variable size and 

urban morphology in the Netherlands. Journal of Geophysical Research, Vol. 116, No. D20, pp. 

1–14. 

[90] Tumanov, S., Stan-Sion, A., Lupu, A., Soci, C., & Oprea, C., 1999. Influences of the city of 
Bucharest on weather and climate parameters. Atmospheric Environment, Vol. 33, No. (24- 25), 

pp. 4173–4183. 

[91] V. M. Nik,  Climate Simulation of an Attic Using Future Weather Data Sets - Statistical 

Methods for Data Processing and Analysis . Sweden: Chalmers University of Technology, 2010. 

Available on  http://publications.lib.chalmers.se/records/fulltext/114053/114053.pdf 

[92] V. M. Nik, “Hygrothermal Simulations of Buildings Concerning Uncertainties of the Future 

Climate,” PhD, Chalmers University of Technology, Gothenburg, Sweden, 2012. Available on 

http://publications.lib.chalmers.se/records/fulltext/159222.pdf 

[93] Wallenten, P. (2010), The treatment of long-wave radiation and precipitation in climate files 

for building physics simulations, Proceedings of the 11th  International Conference on Thermal 
Performance of the Exterior Envelopes of Whole Buildings (Clearwater) 


